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Abstract—
This paper describes a safe and efficient combination of

the object-based message-driven execution and shared array
parallel programming models. In particular, we demonstrate how
this combination engenders the composition of loosely coupled
parallel modules safely accessing a common shared array. That
loose coupling enables both better flexibility in parallel execution
and greater ease of implementing multi-physics simulations. As
a case study, we describe how the parallelization of a new
method for molecular dynamics simulation benefits from both
of these advantages. We also describe a system of typed handle
objects that embed some of the determinacy constraints of the
Multiphase Shared Array programming model in the C++ type
system, to catch some violations at compile time. The combined
programming model communicates in terms of these handles as
a natural means of detecting and preventing errors.

I. INTRODUCTION

Asynchronous message-driven execution is a convenient
and effective model for general-purpose parallel programming.
The flow of control in message-driven systems is dictated
by the arrival of messages. This asynchronous approach has
proven effective in a variety of systems, including Active
messages [1], Split-C [2], and Charm++ [3], which has yielded
a number of successful parallel applications ([4], [5], [6]). In
message-driven applications, the problem to be solved is de-
composed into collections of communicating parallel objects,
providing the opportunity for easy overlap of communication
with computation and runtime-level optimizations such as
automatic load balancing. In the loosely-coupled style encour-
aged by the message-driven model, the assembly of separate
parallel modules in a single application requires adaptation
only of the interfaces, rather than the more dramatic structural
changes or non-overlapped (and hence non-performant) time
or processor division that might be required in single program
multiple data (SPMD) models such as MPI and partitioned
global address space (PGAS). In fine-grained and irregular
applications, this style can be a necessity for attaining high
performance.

However, the message-driven model is not an ideal choice
for all classes of parallel applications. In cases where shared
data is essential to concise expression of the algorithm, the
code needed to explicitly communicate this shared data in
a message-driven style can dominate the structure of the
program, and overwhelm the programmer. In this situation, a

shared address space programming model, as exemplified by
the Global Arrays library [7] and PGAS languages [8], [9],
[10] can be highly advantageous. Applications which require
data structures too large to fit in memory local to one processor
may also become dramatically simpler when expressed in a
shared address space model. The ability to access data in
the global address space without explicit messaging can offer
substantial productivity benefits, and in many cases remote
accesses can be effectively optimized by a compiler, as demon-
strated by Co-Array Fortran [11] and DeSouza [12]. Programs
which use explicit messaging can benefit substantially from the
elimination of boilerplate messaging code which accompanies
a switch to a shared address space model, particularly in
cases where the communication structure is irregular or data-
dependent.

This paper describes the combination of Charm++’s object-
based message-driven execution with shared arrays provided
by Multiphase Shared Arrays (Section IV). In particular, we
demonstrate how this engenders the composition of loosely
coupled parallel modules safely accessing a common shared
array. That loose coupling enables both better flexibility in
parallel execution and greater ease of implementing multi-
physics simulations. As a case study, we describe how the
parallelization of a new method for molecular dynamics sim-
ulation benefits from both of these advantages (Section V). We
also describe a system of typed handle objects (Section III) that
embed some of the constraints of the Multiphase Shared Array
programming model in the C++ type system, to catch some
violations at compile time. The combined programming model
works with these handles as a natural means of detecting and
preventing errors.

II. MULTIPHASE SHARED ARRAYS

Multiphase Shared Arrays (MSA) [13] provide an abstrac-
tion common to several HPC libraries, languages, and appli-
cations: arrays whose elements are simultaneously accessible
to multiple client threads of execution, running on distinct
processors. These clients are user-level threads, typically many
on each processing element (PE), which are tied to their
PE unless explicitly migrated. Application code specifies the
dimension, type, and extent of an array at the time of its
creation, and then distributes a reference to it among client
threads. Client threads access array elements by conventional



subscripting and bulk-transfer operations. Each element has a
particular home location, defined by the array’s distribution,
and is accessed through software-managed caches.

One problem common to shared memory applications are
data races, where concurrent access to globally visible data
yields a non-deterministic result. These races can be difficult
to identify and resolve without substantial expertise, degrading
the productivity benefits of the global address space. The
initial development of MSA was based on the observation
that applications that use shared arrays typically do so in
phases. Within each phase, all accesses to the array use a
single mode, in which data is read to accomplish a particular
task, or updated to reflect the results of each thread’s work.
MSA formalizes this observation, by requiring synchroniza-
tion points between phases, and allowing one of several
specifically-defined access modes (described below) during
each phase. By establishing this discipline, programs using
MSA are inherently deterministic1. However, in exchange for
this guarantee, the programmer gives up some of the freedom
of a completely general-purpose programming model.

A. Data Decomposition and Distribution

The decomposition and distribution of data is an important
consideration in the use of shared arrays. MSA decomposes
arrays not into fixed chunks per PE, but rather into pages
of a common shape. Developers can vary the shape of the
pages to suit applications’ needs. For example, a 10 × 10
array could be broken into ten pages, each in a 10 × 1
shape, or four pages of 5× 5, or other suitable combinations.
Thus, the library does not couple the number of pages that
make up an array to the number of processors on which
an application is running or the number of threads that will
operate on that array. If the various parts of a program are
overdecomposed, that is, decomposed into sufficiently more
pieces than there are processors, the runtime system can hide
latency by overlapping the communication of one piece with
computation from another.

Once the array is split into pages, the pages are distributed
among PEs. The pages are computational objects managed by
the CHARM++ runtime system. This abstraction means that
portions of a shared array can be managed by the same runtime
infrastructure for object mapping and load balancing as other
parts of a parallel program. Thus, each MSA offers control of
the way in which array elements are mapped to pages, and the
mapping of pages to PEs. This affords substantial opportunities
to tune MSA code for both application and hardware charac-
teristics. The user view of an MSA program and corresponding
mapping by the runtime system are illustrated in figure 1.

One possibility enabled by decoupling data distribution
from physical processor identity, or even specific threads of
execution, is that load balancers can treat ‘hot’ portions of
the array the same way they would treat any other object
that was performing intensive work or communication. These

1This determinism holds up to the limits of operations on the contained
data. For instance, floating-point numerical results may vary due to rounding
error, and unsorted sets may return their elements in different orders.

Client
Threads MSA Message-driven

Objects

(a) The user view of an MSA application.
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Fig. 1. The developer works with MSAs, client threads, and parallel objects
without reference to their location, allowing the runtime system to manage
the mapping of entities onto physical resources.

performance-critical segments can result from uneven access
to the array by the computational threads.

B. Caching

Data accessed from an MSA is cached by the runtime in
buffers managed by the implementation. This approach differs
from Global Arrays [7], where the user must either explicitly
allocate and manage buffers for pre-determined remote array
segments or potentially incur remote communication costs for
each array access. Runtime-managed caching offers several
benefits, including simpler application logic, the potential for
less memory allocation and copying, sharing of cached data
among threads, and consolidating messages from multiple
threads.

When an MSA is used by an application, each access
checks whether the element in question is present in the local
cache. If the data is available, it is returned and the executing
thread continues uninterrupted. The programmer can also
make prefetch calls spanning particular ranges of the array,
with subsequent accesses specifying that the programmer has
ensured the local availability of the requested element. Bulk
operations allow manipulation of an entire section of the array
at once, as in Global Arrays.

When a thread requests data that is not present in the local
cache, the cache object sends a request for it to its home
page, then suspends the thread that made the request. At
this point, messages queued for other threads are delivered.
When the home page receives the request, it sends back data
to the remote cache object. The cache manager receives this
message and makes the blocked thread runnable. This process
is illustrated in figure 2.
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Fig. 2. When thread (a) requests data which is not available in the local cache,
the cache manager requests the data from its home PE and thread (a) blocks.
While thread (a) waits, other local work can be done. When the data becomes
available, thread (a) is unblocked and continues. When thread (b) requests
data that is available in the local cache, it receives the data immediately and
continues executing.

Each PE hosts a cache management object which is respon-
sible for moving remote data to and from that PE. Synchro-
nization work is also coalesced from the computational threads
to the cache objects to limit the number of synchronizing
entities to the number of PEs in the system. Depending on
the mode that a given array is in, the cache managers will
treat its data according to different coherence protocols, as in
the Munin distributed shared memory system [14]. However,
the MSA access modes have been carefully chosen to make
cache coherence as simple and inexpensive as possible. In no
case are cache invalidations or unbuffered writes required at
the time of access.

C. Access Modes

By limiting the programmer to the accesses allowed by well-
defined modes and requiring synchronization from all threads
which access the MSA to pass from one mode to another, race
conditions within the array are excluded without requiring the
programmer to understand a complicated or opaque memory
model. The access modes MSA provides are suitable for a
variety of common parallel access patterns, but it is not clear
that these modes are the only ones necessary or suitable to
this model. As we extend MSA further, we expect to discover
more as we explore a broader set of use cases.

1) Read-Only Mode: As its name suggests, read-only
mode makes the array immutable, permitting reads of
any element but writes to none. Remote cache lines can
simply be mirrored locally, and discarded at the next
synchronization point.

2) Write-Once Mode: Since reads are disallowed in this
mode, the primary safety concern when threads are al-
lowed to make assignments to the array is the prevention
of write-after-write conflicts. We prevent these conflicts
by requiring that each element of the array only be
assigned by a single thread during any phase in which

the array is in write-once mode. This is checked at
runtime as cached writes are flushed back to their home
locations. Sophisticated static analysis could allow us to
check this condition at compile time for some access
patterns and elide the runtime checks when possible.

3) Accumulate Mode: This mode effects a reduction into
each element of the array, with each thread poten-
tially making zero, one, or many contributions to any
particular element. While it is most natural to think
of accumulation in terms of operations like addition
or multiplication, any associative, commutative binary
operator can be used in this fashion. One example, used
for mesh repartitioning in the ParFUM framework [15],
uses set union as the accumulation function.

The various access modes are illustrated in the following toy
code that computes a histogram in array H from data written
into array A by different threads:

A.syncToWrite();

for (int i = 0; i < N/P; ++i)
A(tid + i*(P-1)) = f(x, i);

// Done writing A; data can now be read
A.syncToRead();
// Get ready to increment entries in H
H.syncToAccum();

for (int i = 0; i < N/P; ++i) {
int a = A(i + tid*N/P);
H(a) += 1;

}

D. Safety Guarantees

The constrained structure of MSA accesses enforces a
strict guarantee that no MSA operations will suffer from
data races. The difficulty of reasoning about relaxed memory
consistency models and the difficulty in avoiding, detecting,
and resolving data races in shared memory programs makes
this guarantee very attractive. This condition follows directly
from the definition of the access modes. Clearly no data race
can occur due to accesses from different modes, because there
is synchronization between each phase. In read-only mode,
there are no writes to produce possible races. In write-once
mode, write-after-write conflicts are disallowed by definition.
In accumulate mode, the associativity and commutativity of
the accumulate operator guarantee that ordering of accumulate
operations does not affect the final result.

E. Synchronization

A shared array moves from one phase to the next when
its client threads have all indicated that they have finished
accessing it in the current phase, by calling the synchronization
method. During synchronization, each cache flushes modified
data to its home location and waits for its counterparts on
other PEs to do the same. Logically, client threads cannot



access the array again until synchronization is complete. In
SPMD-style MSA code, this requires that threads explicitly
wait for synchronization to complete sometime before any
post-synchronization access. The present work lifts the need to
explicitly wait by delivering messages when synchronization
is complete. This advance is described in section IV.

III. TYPED HANDLES

One drawback of the basic MSA model is its weak sup-
port for error detection. Previous work with MSA led to
applications in which the access mode of each phase was
implicit in the structure of the code. Some sync() calls
would be commented to indicate the new phase of the array,
but this was not universal, and the comments were not always
accurate. Thus, the implicit nature of MSA’s access modes is
problematic. Because MSA is implemented as a C++ library, it
has no compiler infrastructure to detect violations of its access
modes until runtime. This lengthens the debugging process
(while using potentially scarce parallel execution resources)
and leaves the possibility that unexercised code paths contain
serious errors. It also adds avoidable per-access runtime checks
that each operation is consonant with the current access mode.

To address these problems, we have developed a way to
detect a variety of access mode violations at compile-time by
routing all array accesses through lightweight handle objects
whose types correspond to the current mode of the array.
The operations allowed by an array’s current access mode
are presented as methods in the corresponding handle type’s
interface. The synchronization methods return a handle in the
new mode and mark the old handle as ‘invalid’. An example
application using this idiom, parallel k-means clustering, is
described in section III-A. We currently rely on run-time
checks to detect threads synchronizing into different modes,
and intersecting write sets during write-once mode. Converting
ParFUM’s [15] mesh repartitioning code to use typed handles
exposed previously undetected bugs that we subsequently
fixed.

There are numerous alternatives to our typed handle scheme,
but they all suffer from either greatly increased complexity or
the need for tools beyond a C++ compiler. With a more capable
type system in C++, we could define the array itself with a
linear type [16] such that synchronization operations would
change the array’s type in the same way that handle types are
currently changed. This would also eliminate the need to verify
that handles are still valid when they are used. If we wished to
construct more complex constellations of allowed operations,
an approach of policy templates and static assertions (such as
provided by Boost [17]) would serve. Such policy templates
would have a boolean argument for each operation or group
of operations that is controlled.

A more conventional approach to the problem of enforcing
high-level semantic conditions is writing contracts [18] de-
scribing allowable operations. We avoided the use of contracts
in MSA for three reasons. First, contracts require either an
enforcement tool external to the compiler, or a language that
natively supports contracts, such as Eiffel [19]. Second, these

conditions would necessarily depend on state variables that
aren’t visible in the user code. Finally, we prefer a form in
which the violation is local to the erroneous statement, rather
than dependent on context.

Another approach to problems like this, common in the
software engineering literature, is the definition of MSA’s
access modes and phases in a static analysis tool. Again, this
implies enforcement by a tool other than the compiler. The
rules so defined would necessarily be flow-sensitive, which
makes this analysis fairly expensive and bloats the errors that
would result from a rule violation.

A. Example: Parallel k-Means Clustering

In this example, each processor in a large-scale parallel
application run has collected timing data for various segments
of the program. At the end of the run, these metrics need
to be reduced to avoid the slow output of an overwhelming
volume of data. A two-part process identifies representative
processors to report measurements for. The first part groups
the processors by similarity of their execution profiles using
k-means clustering, and the second part selects an exemplar
and outliers from each cluster to report.

An initial implementation of this module was written in
Charm++, but it was found that the large number of reductions
with processors contributing to different parts of the output
was too cumbersome. This same process would be fairly
straight-forward to implement using common MPI functions
such as MPI_Allreduce. However, the experimental nature
of this analysis feature makes it desirable to try it several
times on the same end-of-run data, with varying parameters.
Runs could be executed one after another, in a loop over the
input parameters, but this is wasteful of expensive machine
time given that each run is largely communication-bound. As
an alternative, runs for all of the input parameters could be
executed together, with more complex bookkeeping code to
track where each run’s data lives and whether a given run has
converged yet.

MSA admits straightforward solutions to all of these con-
cerns. The communication pattern is expressed as adding to
and reading from a shared matrix. Multiple concurrent runs are
expressed as separately instantiated collections of objects, one
for each set of parameters. Because each of the concurrent runs
is expressed as an independent collection of objects, each run’s
sequential segments can be mapped to different processors,
avoiding a bottleneck at a shared ‘root’ processor present in
the Charm++ implementation.

The core code of the clustering process is shown in listing 1.
It traces out the full life-cycle of a shared array, clusters,
of summed per-processor performance metrics. The array has
k columns, each of which represents a cluster of processors.
The first numMetrics entries in each column are sums of
actual measurements taken by the processors. There are two
additional entries in each column, the first for the number of
processors in the associated cluster (so that the metrics can be
averaged), and the second for whether any of those processors
joined that cluster in the current iteration.



1 // One instance is created and called on each PE
2 void KMeansGroup::cluster()
3 {
4 CLUSTERS::Write w = clusters.getInitialWrite();
5 if (initSeed != -1) writePosition(w, initSeed);
6
7 // Put the array in Read mode
8 CLUSTERS::Read r = w.syncToRead();
9

10 do {
11 // Each PE finds the seed closest to itself
12 double minDistance = distance(r, curSeed);
13
14 for (int i = 0; i < numClusters; ++i) {
15 double d = distance(r, i);
16 if(d < minDistance) {
17 minDistance = d;
18 newSeed = i;
19 }
20 }
21
22 // Put the array in Accumulate mode,
23 // excluding the current value
24 CLUSTERS::Accum a = r.syncToExcAccum();
25 // Each PE adds itself to its new seed
26 for (int i = 0; i < numMetrics; ++i)
27 a(newSeed, i) += metrics[i];
28
29 // Update membership and change count
30 a(newSeed, numMetrics) += 1;
31 if (curSeed != newSeed)
32 a(0, numMetrics+1) += 1;
33 curSeed = newSeed;
34
35 // Put the array in Read mode
36 r = a.syncToRead();
37 } while(r(0, numMetrics+1) > 0);
38 }

Listing 1. Parallel k-Means Clustering implemented using an MSA named
clusters. This function is run in a thread on every processor. First, processors
selected as initial ‘seeds’ write their locations into the array (call on line
5). Then, all the processors iterate finding the closest seed (lines 14–20) and
moving themselves into it (22–33). They all test for convergence by checking
an entry indicating whether any processor moved (37).

In each iteration, the array alternates between a read phase,
during which every processor finds the closest cluster to
itself, and an accumulate phase, in which the processors
contribute their position to their respective closest clusters.
Every processor performs the same convergence test, checking
whether any processor changed cluster membership during the
current iteration.

The total implementation of the process described is ~610
lines of code, while the Charm++ implementation ran to
~800 lines of code before this new approach was taken. This
represents a code-length reduction of 23.8%.

IV. COMPOSING SHARED-ARRAY AND MESSAGE-DRIVEN
MODULES

In an SPMD environment, the combination of shared-
array and message-passing interaction is fairly natural. Global
Arrays and MPI are frequently used together, and Multiphase

Shared Arrays [13] has previously been used toward the same
end with AMPI [20] on top of Charm++’s message-driven
runtime system. In that setting, issues of array synchronization
and transfer of control are straightforward, if occasionally
cumbersome. However, the message driven model has not
previously been combined directly with shared arrays, despite
MSA’s implementation in terms of message-driven objects.

In the message-driven execution model, the asynchronous
flow of control presents the possibility of unbridled non-
determinism, which is detrimental to ease of program con-
struction and verification. The Charm++ ecosystem offers var-
ious methods of constraining this non-determinism to obtain
good performance without imposing an overwhelming burden
on programmers [21], [22]. Shared arrays in general create
another potential source of undesirable non-determinism, but
MSA’s programming model (described in Section II) requires
that each array be accessed in a fashion that produces deter-
ministic results with respect to that array. The basic challenges
in the use of shared arrays by message-driven code, while
retaining some useful safety guarantees, are dual: determining
when any given object can access the array, and determining
when the overall array’s state has changed and what should
happen to it next.

In the simplest cases, the challenges of combining Charm++
and MSA code have been easy to address since MSA was
first implemented. In that case, there is only one collection
of objects that accesses each array (or set of arrays), each
running one persistent thread. The objects of this distinguished
collection can still interact with others via messages, but
access to their array(s) is fully encapsulated. The problem of
asynchronously processed messages spurring improper array
access is addressed by specifying the objects’ control flow in
SDAG [21]. With respect to the shared array, this is essentially
the same SPMD arrangement as seen before. The extension
of this style to multiple object collections of the same type2

sharing an array is no different than one collection–we can
view these objects as part of one larger collection with an
extra index dimension.

As we introduce multiple modules that want to share an
array, the complexity of the existing approach can increase
dramatically. If we are to maintain MSA’s guarantee of de-
terminism, the code in each module must respect the phase
and synchronization behavior of the others. The obvious but
painful way to accomplish this is for each module to trace out
the synchronization for every phase, even those in which it
does not participate. There are two downsides to this approach:
modules not participating in a phase will nevertheless be
blocked while that phase proceeds, and the phase-change
code of every module must be updated in lockstep, lest the
programmer witness hangs, assertion failures, or wrong results
(depending on the exact changes made).

Our approach to composing the two programming models is
based on sending messages containing array handles to client
objects that react by spawning a thread to perform one phase

2Really, any collections whose phases of array access are identical



worth of computation on the array. These messages serve to
signal the client objects that the array has been synchronized
properly and is in the mode they expect and depend on.
At the end of the phase, these threads call a newly added
method, Handle::syncDone(), to signal completion and
deactivate the handle.

To drive the interactions of various collections of parallel
objects with the shared arrays, we construct explicit coordi-
nation code that sends the messages mentioned above. This
‘driver’ code centralizes the knowledge of what phases an
array will pass through and which objects participate in which
phase. For objects not participating in a given phase, the driver
code passes the same array handle as it sent to the active chares
to a special entry method that simply calls syncDone and
returns. This fulfills those objects’ participation in the phase
without interrupting the flow of their normal work.

Giving multiple independent modules access to common
shared arrays presents new opportunities beyond coupling
pieces of an application that wish to interact through a shared
array. Different steps of computation can easily have widely-
varying demands in terms of the work to be done, the amount
of data to be accessed, and the pattern in which that access
occurs. In as much as these steps don’t depend on persistent
state outside the array (exhibited in the case study in Sec-
tion V, and seen in other applications in development), we can
separate each phase into its own collection of objects, allowing
us to vary the degree and nature of parallel decomposition and
mapping, taking into account grain size, load balance, and data
locality.

This approach supports a separation of concerns between
application scientists writing the bodies of the individual
methods that perform the computation and computer scientists
focusing on the issues of efficient parallel execution. There
are also software engineering benefits to this approach, in that
distinct computational steps are distinguished and named as
loosely coupled components in the resulting code. Decoupling
these modules also enables testing each module and its ac-
cesses to shared arrays in isolation from the others.

V. CASE STUDY: LONG-RANGE FORCES IN MOLECULAR
DYNAMICS

To direct and test our composition of shared-array and
message-driven execution, we have developed a prototype par-
allel implementation of the novel long-range force-calculation
method for classical molecular dynamics (MD) known as the
Multi-Level Summation Method (MSM) [23]. MSM is a po-
tential replacement to the popular particle-mesh Ewald (PME)
summation that operates on a hierarchy of progressively-
coarsened grids to compute the electric potential across the
simulation space from the distribution of particles’ electric
charges. Compared to PME, MSM can produce similarly
accurate results in O(n) time, while PME requires O(n log n),
where n is the number of particles in the system. MSM has
the additional practical advantage of an isoefficient 3D stencil
structure, as opposed to PME’s 3D FFTs.
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Fig. 3. The multi-level summation process as implemented using message-
driven multiphase shared array code

Our prototype is built atop the Molecular3D package, a
simplified MD benchmark modeled on the hybrid spatial-
force decomposition used by NAMD [4]. In this decompo-
sition, the particles are divided among a collection of Patch
objects, each responsible for the particles within a patch
of the simulation box. The forces among the particles are
computed by a collection of Compute objects that receive
particle positions from one or two patch objects, calculate the
pair-wise electrostatic interactions among the particles, and
transmit the resulting forces back to the patches. The patches
are responsible for integrating the net forces on the particles
to obtain their position and velocity for the next time step.

We incorporate MSM into this existing structure by adding
a new set of Compute objects responsible for interpolating
particles’ charge contributions onto the finest charge grid and
interpolating the forces on the particles back from the finest
potential grid. The restriction, prolongation, and direct sum
steps are each performed by separate chares at each level.
Each grid is represented by an MSA. The entire process is
illustrated in figure 3.

It is important to note that this process exposes parallelism
at two distinct levels: each of the computational steps at each
level can begin as soon as its input data is available, and
the work of each step can be divided among a number of
objects. In our prototype, we have only implemented the first,
by creating a separate object for each step of the process, so
that we can map these steps onto separate processors.

We present some extracts from our prototype code in
listing 2. Lines 1–16 show the coordination code (written in
Structured Dagger [21]) for the work each MSMCompute does



1 entry void MSMCompute::step() {
2 when interact(ParticleDataMsg *msg),
3 contributeCharges(Accum charges) {
4 particles = msg;
5 computeChargeGrid(charges);
6 charges.syncDone();
7 }
8
9 when readPotentials(Read potentials) {

10 forceMsg = new ParticleForceMsg;
11 computeForces(potentials, forceMsg);
12 patch.receiveForces(forceMsg);
13 potentials.syncDone();
14 delete particles;
15 }
16 }
17
18 entry void Energy::calculate(Read charges,
19 Read potentials)
20 {
21 double u = 0.0;
22
23 for(int i = 0; i < grid_x[0]; ++i)
24 for(int j = 0; j < grid_y[0]; ++j)
25 for(int k = 0; k < grid_z[0]; ++k)
26 u += charges(i,j,k) * potentials(i,j,k);
27
28 contribute(u); // Contribute to a reduction
29
30 charges.syncDone();
31 potentials.syncDone();
32 }

Listing 2. Two illustrative functions: a) One timestep’s work for the
Compute objects that interface between the Patches and the MSM compu-
tation. b) A method that computes the system’s long-range potential energy
by summing the point-wise product of the charge and potential grids.

in a single run of the MSM process. First, it waits for messages
containing particle positions via its interact entry method
and an accumulate-mode handle on the charge grid via its
contributeCharges entry method (lines 2–3). Once both
have arrived, it stores the particles’ positions, interpolates
those particles’ charges onto the grid, and synchronizes the
grid to indicate completion. Later, when the potential grid
is ready to have forces anterpolated back to the particles, as
indicated by receiving a read-mode handle (line 9), it prepares
and sends a message reporting the forces it calculates back to
its corresponding Patch, synchronizes the potential grid, and
discards the old particle positions.

One of the computations internal to MSM, of the potential
energy of longe-range interactions, can be seen in lines 18–32.
This entry method receives read-mode handles to both finest-
resolution grids (18–19), computes their pointwise product (or
this Energy objects’s portion thereof, when we decompose
this step), contributes it to a reduction, and synchronizes the
grids.

Small-scale timing results for our implementation can be
seen in figure 4. There is a single chare performing each step
of the method at each level, and so there is insufficient de-
composition to attain good overlap. Our future work includes
developing this further and integrating it with NAMD.

Processors Time (s)
1 87
2 56
3 48
4 39

Fig. 4. Performance results for an untuned preliminary implementation of
multi-level summation in Molecular3D using MSA

VI. RELATED WORK

Software distributed shared memory (DSM) systems have
been widely studied as a programming model for simplifying
cluster programming. These systems commonly use hardware
designed to support virtual memory page faults to detect non-
local accesses and hide the underlying messaging. This ap-
proach is combined with relaxed memory consistency models
to improve performance and compensate for false sharing,
which can otherwise be debilitating when the unit of sharing
is a memory page.

Treadmarks [24] and its successor Cluster OpenMP [25] are
successful DSM implementations that closely mimic physical
shared memory from the programmer’s perspective. They
impose no synchronization burden beyond what is needed in a
general shared memory program. A multiple-writer coherence
protocol ameliorates the performance penalty of false sharing
by allowing non-conflicting writes by multiple threads within
a single page. However, false sharing and the resulting cache
invalidations remains a major source of performance degrada-
tion in these systems.

Munin [14], [26] introduces the idea of multiple cache co-
herence protocols based on common memory access patterns.
For example, read-mostly objects are read far more often
than they are written. Munin replicates read-mostly objects
and updates their values via broadcast. The authors identify a
variety of common access modes, including write-once, result,
producer-consumer, and migratory. All objects that do not fall
into an optimized category are handled with a general-purpose
coherence protocol.

In Munin, each variable’s mode is statically determined at
compile-time. Unfortunately, Munin’s virtual memory mech-
anism requires each shared variable to be located on its
own page. Despite this handicap, the efficiencies provided by
specialized access modes led to substantial performance gains.

These DSM systems are similar to MSA in that accesses to
shared arrays do not include any information about where the
accessed data is located. They differ in their lack of control
over data decomposition. Within each page, MSA supports a
variety of data layouts specified by the programmer, such as
row- and column-major, to allow matching between the array’s
memory organization and access patterns of the application.
Each page is dynamically mapped to a PE by a combination
of programmer specification and runtime modeling and mea-
surement. In contrast, Cluster OpenMP and Munin do not offer
mechanisms to control data distribution, although Huang et al.
have implemented mapping directives in OpenMP as part of



an effort to implement OpenMP on top of Global Arrays [27].
Global Arrays [7] (GA) is a partitioned global address space

model that combines a global view of memory with explicit
asynchronous gets and puts over RDMA. GA provides no
caching or replication of remote data, preferring to allow
the programmer to directly control all memory transfers.
One-sided communication is used to access remote memory,
which is staged into a buffer provided by the programmer. In
the case of discontiguous array accesses, RDMA operations
can be used directly to avoid unnecessary overhead. Like
MSA, the unit of sharing in GAs can be controlled by the
programmer and is not tied to cache line or memory page
size. MSA’s composability with other programming models is
similar in spirit to GA’s composability with MPI and discrete
asynchronous tasks [28].

X10 [10] is a PGAS language with strong support for asyn-
chronous operations and flexible synchronization. Its clock
synchronization construct, and the subsequent proposal of
phasers [29], are somewhat similar in spirit to the less restric-
tive synchronization we have introduced to MSA, although
the syntax and implementation are significantly different.
Recently, proposals to add more asynchronous mechanisms
to UPC have appeared as well [30].

VII. CONCLUSION

In this paper, we consider the combination of the Multi-
Phase Shared Arrays programming model, which sacrifices
some flexibility of a shared memory system to prevent data
races, with the general-purpose message-driven execution
model. We describe an extension of MSA’s implementation
to enforce its constraints more inexpensively at compile-time.
We then build on this new mechanism to compose MSA safely
with existing message-driven code.

To improve on the safety guarantees of MSA, we introduce
a system of typed handle objects. An MSA’s access mode
in each phase of a parallel program defines the operations al-
lowed on the array during that phase. In MSA, the programmer
was previously responsible for manually keeping track of each
array’s phase and avoiding inappropriate accesses. Now, this
state information is encoded in the type system and checked
automatically at compile-time.

Building on the improved safety provided by typed handles,
we tackled the problem of integrating MSAs into programs
composed of message-driven objects. This is accomplished by
constructing orchestration code that sends messages containing
appropriate handles on a shared array to clients involved in
each phase. In line with this, we modified the synchronization
semantics such that client threads not participating in an
entire series of phases need not block while waiting for
synchronization to complete.

To demonstrate the advances described above, we present
a pair of examples drawn from real applications. The first, a
parallel implementation of k-means clustering, demonstrates
the use of typed handles in SPMD-style MSA code. The
second, multi-level summation for molecular dynamics, mo-
tivates our synthesis of MSA with message-driven execution

and illustrates the resulting design.
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