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Abstract
One way to simplify parallel programming is to use programming
models that sacrifice generality in exchange for simplicity, im-
proved safety guarantees, and broader opportunities for optimiza-
tion. When using such models, the composability of modules writ-
ten using different models is critical to their utility. This paper
presents enhancements to the limited Multi-Phase Shared Arrays
(MSA) programming model that improve its safety and compos-
ability with the general-purpose message-driven execution model.
We demonstrate the effectiveness of this approach using examples
drawn from real-world programs which benefit from the simplicity
of task-specific models without sacrificing performance.

Earlier versions of MSA excluded data races by constraining
when and how client code could access any given shared array, but
relied on runtime checking to identify constraint violations. These
checks imposed a performance penalty on MSA code and left the
possibility that violations in rare edge cases would go undetected.
This paper describes an encoding of the constraints in question in
the C++ type system, enabling static detection of most violations.

MSA’s strict synchronization requirements previously limited
the flexibility of composing multiple modules that would interact
through a common shared array. The paper describes mechanisms
used to lift that limitation.

1. Introduction
Message-driven execution is a convenient and effective model for
parallel programming. The flow of control in message-driven sys-
tems is dictated by the arrival of messages. This asynchronous
approach has proven effective in a variety of systems, including
Active messages [von Eicken et al. 1992], Split-C [Culler et al.
1993], and Charm++ [Kale and Krishnan 1996], which has yielded
a number of successful parallel applications [Bhatele et al. 2008,
Bohm et al. 2008, Jetley et al. 2008]. In message-driven applica-
tions, the problem is decomposed into collections of communicat-
ing parallel objects, providing the opportunity for easy overlap of
communication with computation and runtime-level optimizations
such as automatic load balancing. In the loosely-coupled style en-
couraged by the message-driven model, the assembly of separate
parallel modules in a single application requires adaptation only of
the interfaces, rather than the more dramatic structural changes that
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might be required in single program multiple data (SPMD) models
such as MPI and partitioned global address space (PGAS). In fine-
grained and irregular applications, this style can be a necessity for
attaining high performance.

However, the message-driven model is not an ideal choice for
all classes of parallel applications. In cases where shared data is es-
sential to concise expression of the algorithm, the code needed to
explicitly communicate this shared data in a message-driven style
can dominate the structure of the program, and overwhelm the pro-
grammer. In this situation, a shared address space programming
model, as exemplified by the Global Arrays library [Nieplocha
et al. 1996] and partitioned global address space (PGAS) lan-
guages [Koelbel et al. 1994, El-Ghazawi et al. 2005, Barriuso and
Knies 1994, Numrich and Reid 1998, Charles et al. 2005] can be
highly advantageous. Applications which require data structures
too large to fit in memory local to one processor may also become
dramatically simpler when expressed in a shared address space
model. The ability to access data in the global address space with-
out explicit messaging can offer substantial productivity benefits,
and in many cases remote accesses can be effectively optimized
by a compiler, as demonstrated by Co-Array Fortran [Dotsenko
et al. 2004] and others. Programs which use explicit messaging can
benefit substantially from the elimination of boilerplate messaging
code which accompanies a switch to a shared address space model,
particularly in cases where communication structure is irregular or
data-dependent. However, shared memory applications are prone to
data races, where concurrent access to globally visible data yields
a non-deterministic result. These races can be difficult to identify
and resolve without substantial expertise, degrading the productiv-
ity benefits of the global address space.

One approach to addressing the difficulties posed by data races
is simply to constrain the programming model to disallow races
altogether. In exchange for this safety guarantee, the programmer
gives up the ability to express arbitrary parallel interactions, sac-
rificing the completeness of general-purpose programming mod-
els. This is the approach taken by Multiphase Shared Arrays
(MSA) [DeSouza and Kalé 2004]. In MSA, each shared array is
decomposed under user control and distributed across the parallel
system by an underlying adaptive runtime system. These MSAs are
restricted to a few simple access modes which guarantee freedom
from data races. Although MSA is an incomplete programming
model that cannot express all types of parallelism, in practice it is
well-suited for a large variety of parallel algorithms, and for those
problems, the expression is elegant and race-free.

The shared address space model and the message-driven model
offer sharply contrasting views of how to write parallel programs.
In shared address space models, the programmer always has a view
of the entire system. Global coordination is a natural construct, and
is used as necessary to maintain a globally consistent view of mem-
ory. In message-driven applications, the focus is local. Access to
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global state is extremely limited, and global coordination is cum-
bersome. To combine these programming models, the gap between
the global, coordinated view offered by shared address space mod-
els and the local, asynchronous nature of message-driven program-
ming must be reconciled.

In this paper we describe our approach to combining the shared
memory and message-driven programming models in a single, uni-
fied system. Our approach offers access to a global address space
through Multiphase Shared Arrays, where array accesses are di-
vided into distinct phases which are demarcated by synchroniza-
tion. MSA benefits greatly from this combined approach because it
is an incomplete programming model, so although it is often well-
suited to expressing particular algorithms or modules of a complex
program, it is rarely an ideal choice for all portions of a compli-
cated parallel application. The combination of MSA with a general-
purpose message-driven programming model makes the safety and
convenience of MSA available while allowing arbitrary parallel in-
teractions. Based on the implementation of MSA available online,
we have implemented new features to facilitate this combined ap-
proach and to detect more violations of the MSA programming
model at compile-time rather than run-time. We call our enhanced
version of MSA message-driven MSA (MDMSA).

We begin by describing the different MSA phases and the as-
sociated safety guarantees in section 2. We discuss the relationship
between MSA and the underlying runtime system, including the ef-
fects of overdecomposition and asynchrony. We then describe our
own enhancements to MSA. In section 3 we describe the addition
of typed handles, which facilitate the discovery of MDMSA access
violations at compile-time. Then in section 4 we describe a method
for specifying global structure for applications using MSAs via
high level orchestration code. This code dispatches message-driven
constituent pieces, allowing simple, high-performance composition
of components accessing shared arrays with other message-driven
components without giving up the benefits of a simple, high-level
view of application structure. Each of these enhancements is ac-
companied by a real-world example which demonstrates its use.

2. Multiphase Shared Arrays
Multiphase Shared Arrays (MSA) provide an abstraction common
to several HPC libraries, languages, and applications: arrays whose
elements are simultaneously accessible to multiple client threads of
execution, running on distinct processors. These clients are user-
level threads, typically many on each processing element (PE),
which are tied to their PE unless explicitly migrated. Application
code specifies the dimension, type, and extent of an array at the
time of its creation, and then distributes a reference to it among
client threads. Client threads access array elements by conventional
subscripting and bulk-transfer operations. Each element has a par-
ticular home location, defined by the array’s distribution, and is
accessed through software-managed caches.

The initial development of MSA [DeSouza and Kalé 2004] was
based on the observation that applications that use shared arrays
typically do so in phases. Within each phase, all accesses to the
array use a single mode, in which data is read to accomplish a
particular task, or updated to reflect the results of each thread’s
work. MSA formalizes this observation, preventing race conditions
by requiring synchronization points between phases, and allowing
a single specifically-defined access mode during each phase.

Previous work with MSA led to applications in which the access
mode of each phase was implicit in the structure of the code. Some
sync() calls would be commented to indicate the new phase of
the array, but this was not universal, and the comments were not
always accurate. Thus, the implicit nature of the access modes is
problematic, in that accesses not allowed in the current phase might
go undetected until run-time.

Another problem with MSA is that proper synchronization re-
quires all threads operating on the shared array to take part in all
phases. This requirement forces any threads that do not access the
array during a phase to persist and sit idle during that phase. It also
requires all client code to track an identical sequence of synchro-
nizations, tightly coupling client modules that could otherwise be
oblivious to each other. In the message-driven model, where the
code to handle a message may operate entirely within one phase,
proper synchronization is a hurdle to the use of MSA.

The work presented in this paper addresses these problems. We
enforce access modes at compile-time, by the use of statically-
typed handle objects, enhancing the safety of the language and re-
ducing some overheads. We also eliminate the requirement for all
client threads to take part in end-of-phase synchronization, decou-
pling client code from the global life-cycle of an array.

The remainder of this section describes the programming model
and implementation of MSA.

2.1 Data Decomposition and Distribution
The decomposition and distribution of data is an important con-
sideration in the use of shared arrays. MSA decomposes arrays
not into fixed chunks per PE, but rather into pages of a common
shape. Developers can vary the shape of the pages to suit applica-
tions’ needs. For example, a 10 × 10 array could be broken into
ten pages, each in a 10 × 1 shape, or four pages of 5 × 5, or other
suitable combinations. Thus, the library does not couple the num-
ber of pages that make up an array to the number of processors on
which an application is running or the number of threads that will
operate on that array. If the various parts of a program are overde-
composed, that is, decomposed into sufficiently more pieces than
there are processors, the runtime system can hide latency by over-
lapping the communication of one piece with computation from
another.

Once the array is split into pages, the pages are distributed
among PEs. The pages are computational objects managed by the
runtime system. This abstraction means that portions of a shared
array can be managed by the same runtime infrastructure for object
mapping and load balancing as other parts of a parallel program.
Thus, each MSA offers control of the way in which array elements
are mapped to pages, and the mapping of pages to PEs. This affords
substantial opportunities to tune MSA code for both application
and hardware characteristics. The user view of an MSA program
and corresponding mapping by the runtime system are illustrated
in figure 1.

One possibility enabled by decoupling data distribution from
physical processor identity is that load balancers can treat ‘hot’
portions of the array the same way they would treat any other ob-
ject that was performing intensive work or communication. These
performance-critical segments can result from uneven access to the
array by the computational threads.

2.2 Caching
Data accessed from an MSA is cached by the runtime in buffers
managed by the implementation. This approach differs from Global
Arrays [Nieplocha et al. 1996], where the user must either explic-
itly allocate and manage buffers for pre-determined remote array
segments or potentially incur remote communication costs for each
array access. Runtime-managed caching offers several benefits, in-
cluding simpler application logic, the potential for less memory al-
location and copying, sharing of cached data among threads, and
consolidation messages from multiple threads.

When an MSA is used by an application, each access checks
whether the element in question is present in the local cache. If
the data is available, it is returned and the executing thread con-
tinues uninterrupted. The programmer can also make prefetch calls
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Objects
(a) The user view of an MSA application.

PE 1 PE 2 PE 3

(b) One possible mapping of program entities onto PEs

Figure 1. The developer works with MSAs, client threads, and
parallel objects without reference to their location, allowing the
runtime system to manage the mapping of entities onto physical
resources.

Cache

PE 2

(a)
(b)

PE 1

Figure 2. When thread (a) requests data which is not available
in the local cache, the cache manager requests the data from its
home PE and the thread blocks. While thread (a) waits, other local
work can be done. When the data becomes available, thread (a)
is unblocked and continues. When thread (b) requests data that is
available in the local cache, it receives the data immediately and
continues executing.

spanning particular ranges of the array, with subsequent accesses
specifying that the programmer has ensured the local availability
of the requested element. Bulk operations allow manipulation of an
entire section of the array at once, as in Global Arrays.

When a thread requests data that is not present in the local
cache, the cache object sends a request for it to its home page,
then suspends the thread that made the request. At this point,
messages queued for other threads are delivered. When the home
page receives the request, it sends back data to the remote cache

object. The cache manager receives this message and makes the
blocked thread runnable. This process is illustrated in figure 2.

Each PE hosts a cache management object which is responsible
for moving remote data to and from that PE. Synchronization
work is also coalesced from the computational threads to the cache
objects to limit the number of synchronizing entities to the number
of PEs in the system. Depending on the mode that a given array
is in, the cache managers will treat its data according to different
coherence protocols, as in the Munin distributed shared memory
system [Bennett et al. 1990]. However, the MSA access modes
have been carefully chosen to make cache coherence as simple
and inexpensive as possible. In no case are cache invalidations or
unbuffered writes required at the time of access.

2.3 Access Modes
By limiting the programmer to the accesses allowed by well-
defined modes and requiring synchronization from all threads
which access the MSA to pass from one mode to another, race
conditions within the array are excluded without requiring the pro-
grammer to understand a complicated or opaque memory model.
The access modes MSA provides are suitable for a variety of com-
mon parallel access patterns, but it is not clear that these modes
are the only ones necessary or suitable to this model. As we extend
MSA further, we expect to discover more as we explore a broader
set of use cases.

Read-Only Mode As its name suggests, read-only mode makes
the array immutable, permitting reads of any element but writes
to none. Remote cache lines can simply be mirrored locally, and
discarded at the next synchronization point.

Write-Once Mode Since reads are disallowed in this mode, the
primary safety concern when threads are allowed to make as-
signments to the array is the prevention of write-after-write con-
flicts. We prevent these conflicts by requiring that each element
of the array only be assigned by a single thread during any phase
in which the array is in write-once mode. This is checked at run-
time as cached writes are flushed back to their home locations.
Sophisticated static analysis could allow us to check this con-
dition at compile time for some access patterns and elide the
runtime checks when possible.

Accumulate Mode This mode effects a reduction into each ele-
ment of the array, with each thread potentially making zero,
one, or many contributions to any particular element. While it
is most natural to think of accumulation in terms of operations
like addition or multiplication, any associative, commutative bi-
nary operator can be used in this fashion. One example, used for
mesh repartitioning in the ParFUM framework [Lawlor et al.],
uses set union as the accumulation function.

The various access modes are illustrated in the following toy
code that computes a histogram in array H from data written into
array A by different threads:

A.syncToWrite ();

for (int i = 0; i < N/P; ++i)
A(tid + i*(P-1)) = f(x, i);

A.syncToRead ();
H.syncToAccum ();

for (int i = 0; i < N/P; ++i) {
int a = A(i + tid*N/P);
H(a) += 1;

}
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Array subscripts are set off by parentheses, rather than the more
conventional square brackets, so that syntax remains consistent
when accessing arrays of dimension greater than one. This is a
restriction imposed by C++’s different rules for overloading the
subscript (operator

) and call (operator()) operators.

2.4 Safety Guarantees
The constrained structure of MSA accesses enforces a strict guar-
antee that no MSA operations will suffer from data races. The
difficulty of reasoning about relaxed memory consistency models
and the difficulty in avoiding, detecting, and resolving data races
in shared memory programs makes this guarantee very attractive.
This condition follows directly from the definition of the access
modes. Clearly no data race can occur due to accesses from differ-
ent modes, because there is synchronization between each phase.
In read-only mode, there are no writes to produce possible races. In
write-once mode, write-after-write conflicts are disallowed by def-
inition. In accumulate mode, the associativity and commutativity
of the accumulate operator guarantee that ordering of accumulate
operations does not affect the final result. Owner-computes mode
allows only local accesses, so races are again impossible.

2.5 Synchronization
A shared array moves from one phase to the next when its client
threads have all indicated that they have finished accessing it in
the current phase, by calling the synchronization method. During
synchronization, each cache flushes modified data to its home lo-
cation and waits for its counterparts on other PEs to do the same.
Logically, client threads cannot access the array again until syn-
chronization is complete. In MSA’s SPMD-style code, as in MPI,
this requires that threads explicitly wait for synchronization to
complete sometime before any post-synchronization access. The
present work lifts the need to explicitly wait by delivering mes-
sages when synchronization is complete. This advance is described
as part of section 4.2.

3. Typed Handles
One drawback of the basic MSA model is its weak support for
error detection. Because MSA is implemented as a C++ library,
it has no compiler infrastructure to detect violations of its access
modes until runtime. This lengthens the debugging process (while
using potentially scarce parallel execution resources) and leaves
the possibility that unexercised code paths contain serious errors. It
also adds avoidable per-access runtime checks that each operation
is consonant with the current access mode.

To address these problems, we have developed a way to detect
a variety of access mode violations at compile-time in MDMSA
by providing all array accesses through lightweight handle objects
whose types correspond to the current mode of the array. The op-
erations disallowed by an array’s current access mode are excluded
by omitting them from the corresponding handle type. Once a han-
dle is used in synchronization, it is invalidated, so that future uses
will dereference a NULL pointer. An example application using this
idiom, parallel k-means clustering, is shown in section 3.1. We
currently rely on run-time checks to detect threads synchronizing
into different modes, and intersecting write sets during write-once
mode.

Ideally, the programmer would access the shared array by a
persistent name within any block of code. However, the use of
the C++ type system to enforce access modes requires that we
name a distinct variable in each phase so that it can have a distinct
type. These handles then take the place of the array itself as an

argument to the various operations. Each handle’s type only defines
the operations that are allowed in its associated mode, so that
attempts to perform disallowed operations induce a compiler error.

There are numerous alternatives to our typed handle scheme, but
they all suffer from either greatly increased complexity or the need
for tools beyond a C++ compiler. With a more capable type system
in C++, we could define the array itself with a linear type [Wadler
1990] such that synchronization operations would change the ar-
ray’s type in the same way that handle types are currently changed.
This would also eliminate the need to verify that handles are still
valid when they are used. If we wished to construct more com-
plex constellations of allowed operations, an approach of policy
templates and static assertions (such as provided by Boost [Mad-
dock and Cleary]) would serve. Such policy templates would have
a boolean argument for each operation or group of operations that
is controlled. We feel that this construct creates less clear error re-
porting and complicates the implementation.

A more conventional approach to the problem of enforcing
high-level semantic conditions is writing contracts [Helm et al.
1990] describing allowable operations. We avoided the use of con-
tracts in MDMSA for three reasons. First, contracts require either
an enforcement tool external to the compiler, or a language that
natively supports contracts, such as Eiffel [Meyer 1992]. Second,
these conditions would necessarily depend on state variables that
aren’t visible in the user code. Finally, we prefer a form in which
the violation is local to the erroneous statement, rather than depen-
dent on context.

Another approach to problems like this, common in the software
engineering literature, is the definition of MDMSA’s access modes
and phases in a static analysis tool. Again, this implies enforcement
by a tool other than the compiler. The rules so defined would neces-
sarily be flow-sensitive, which makes this analysis fairly expensive
and bloats the errors that would result from a rule violation.

3.1 Example: Parallel k-Means Clustering
In this example, each processor in a large-scale parallel application
run has collected timing data for various segments of the program.
At the end of the run, these metrics need to be reduced to avoid
the slow output of an overwhelming volume of data. A two-part
process identifies representative processors to report measurements
for. The first part groups the processors by similarity of their execu-
tion profiles using k-means clustering, and the second part selects
an exemplar and outliers from each cluster to report.

An initial implementation of this module was written in Charm++,
but it was found that the large number of reductions with processors
contributing to different parts of the output was too cumbersome.
This same process would be fairly straight-forward to implement
using common MPI functions such as MPI Allreduce. However,
the experimental nature of this analysis feature makes it desirable
to try it several times on the same end-of-run data, with varying pa-
rameters. Runs could be executed one after another, in a loop over
the input parameters, but this is wasteful of expensive machine
time given that each run is largely communication-bound. As an
alternative, runs for all of the input parameters could be executed
together, with more complex bookkeeping code to track where each
run’s data lives and whether a given run has converged yet.

MDMSA admits straightforward solutions to all of these con-
cerns. The communication pattern is expressed as adding to and
reading from a shared matrix. Multiple concurrent runs are ex-
pressed as separately instantiated collections of objects, one for
each set of parameters. Because each of the concurrent runs is
expressed as an independent collection of objects, each run’s se-
quential segments can be mapped to different processors, avoiding
a bottleneck at a shared ‘root’ processor present in the Charm++
implementation.
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1 // One instance is created and called on each PE
2 void KMeansGroup :: cluster ()
3 {
4 CLUSTERS ::Write w = clusters.getInitialWrite ();
5 // PEs selected as initial seeds write their
6 // positions into the array
7 initialize(w);
8
9 // Put the array in Read mode

10 CLUSTERS ::Read r = w.syncToRead ();
11
12 do {
13 // Each PE finds the seed closest to itself
14 double minDistance = distance(r, curSeed );
15
16 for (int i = 0; i < numK; ++i) {
17 double d = distance(r, i);
18 if(d < minDistance) {
19 minDistance = d;
20 newSeed = i;
21 }
22 }
23
24 // Put the array in Accumulate mode ,
25 // excluding the current value
26 CLUSTERS ::Accum a = r.syncToExcAccum ();
27 // Each PE adds itself to its new seed
28 for (int i = 0; i < numMetrics; ++i)
29 a(newSeed , i) += metrics[i];
30
31 // Update membership and change count
32 a(newSeed , numMetrics) += 1;
33 if (curSeed != newSeed)
34 a(0, numMetrics +1) += 1;
35 curSeed = newSeed;
36
37 // Put the array in Read mode
38 r = a.syncToRead ();
39 } while(a(0, numMetrics +1) > 0);
40 }

Listing 1. Parallel k-Means Clustering implemented using an
MSA named clusters. This function is run in a thread on every
processor. First, processors selected as initial ‘seeds’ write their lo-
cations into the array (call on line 7). Then, all the processors iterate
finding the closest seed (lines 13–22) and moving themselves into
it (24–35). They all test for convergence by checking an entry indi-
cating whether any processor moved (39).

The core code of the clustering process is shown in listing 1.
It traces out the full life-cycle of a shared array, clusters,
of summed per-processor performance metrics. The array has k
columns, each of which represents a cluster of processors. The first
numMetrics entries in each column are sums of actual measure-
ments taken by the processors. There are two additional entries in
each column, the first for the number of processors in the associ-
ated cluster (so that the metrics can be averaged), and the second
for whether any of those processors joined that cluster in the current
iteration.

In each iteration, the array alternates between a read phase, dur-
ing which every processor finds the closest cluster to itself, and an
accumulate phase, in which the processors contribute their position
to their respective closest clusters. Every processor performs the
same convergence test, checking whether any processor changed
cluster membership during the current iteration.

The total implementation of the process described is ~610 lines
of code, while the Charm++ implementation ran to ~800 lines of

code before this new approach was taken. This represents a code-
length reduction of 23.8%.

4. MDMSA and Message-Driven Components
Although MSA is well-suited to a variety of parallel algorithms, the
limitations it places on parallel interactions make it unlikely that it
will be an ideal choice for all parts of a large and complex appli-
cation with many distinct components. Even if MSA could express
all possible parallel algorithms, it would still be highly desirable to
allow easy interaction between MSA components and components
written using other models. The ability to freely compose MSA
code with non-MSA code is essential for MSA’s practical utility.

In particular, composability allows programmers to identify
parts of their application which would benefit from shared memory
and implement those parts in MSA. However, this type of compo-
sition is often highly cumbersome or impossible in MSA because
of its phased synchronization requirements and use of SPMD-style
threads, as shown in the next example.

4.1 Long-range Force Calculation for Molecular Dynamics
Consider the case of computing long range interaction forces in a
molecular dynamics simulation using particle mesh Ewald summa-
tion (PME), written in Charm++. In this application, particles are
grouped into patches according to their physical locations. The po-
sitions of these particles are collected from each patch into an asso-
ciated PME compute object, which is responsible for interpolating
the charges from their locations in continuous space onto the points
of a discrete grid composed of pencils, each of which represents
a single row of the grid. The compute objects serve to offload as
much work as possible from the patch objects for performance rea-
sons. Once the charges have been interpolated, effective interaction
potentials are calculated on the grid points by a spatial FFT, con-
volution with a kernel representing the force law, and inversion of
the FFT. The computes then interpolate the force on each particle
from the potentials at nearby grid points.

The difficulty in this code lies in the interpolation from PME
computes to grid pencils and back. Each compute is responsible
for a particular portion of the simulation region and tracks which
pencils intersect that region. To perform interpolation, messages
to each of these pencils are built using indirect array accesses to
map physical coordinates onto the identity of the recipient. The
pencils track how many computes have sent them messages so far
and proceed only when all their computes have delivered messages.
A similar procedure occurs in the opposite direction when forces
are interpolated back onto the particles at the end of PME. This
communication structure is shown in figure 3(a).

While this approach is acceptable, the large amount of book-
keeping involved in identifying the number and identities of mes-
sage sources and recipients in each interpolation is undesirable, as
it leads to convoluted code that is difficult to optimize. MSA offers
the possibility of much simpler code by allowing the PME com-
putes and pencils to read and write from a common shared array,
avoiding the need for computes to track which pencils overlap them
and vice-versa. The resulting communication structure is shown in
figure 3(b).

Unfortunately, in the base MSA programming model we have
presented, it is infeasible to replace the complex interpolation code
with a simpler MSA alternative. The communicating PME com-
pute and pencil objects are message-driven entities which are not
expressed in terms of blockable MSA threads. Even if they could
be modified easily, the interpolation process involves transferring
control from one set of threads (the computes) to another (the pen-
cils) when the array changes phase. This delegation of control can-
not be expressed in the MSA model we have presented thus far: all
threads involved in the MSA must participate in each phase. While
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Patches PencilsComputes

(a) In a purely message-driven application, PME involves complex messag-
ing to accomplish the interpolation to and from the discrete grid.

Patches PencilsComputes MSA

(b) When MDMSA is used to manage the interpolation, no complex tracking
of the relationship between compute objects and pencils is required.

Figure 3. Communication pattern of PME with and without
MDMSA.

it might be possible to have all threads (both compute and pencil)
take part in all MSA phases, this tightly couples two components
unnecessarily and requires semantically meaningless synchroniza-
tion points to be inserted into the code of each component.

This type of orchestration problem, in which an MSA would
be used by multiple components in turn, must be solved in order
to allow useful composition of MSA modules. To this end, we
have developed a higher-level orchestration language for MDMSA
that describes synchronization phases and flow of control over the
lifetime of a single array, allowing effective composition of MSA
modules with message-driven modules.

4.2 Orchestration and Client Code
In the present scheme, application developers explicitly encode the
sequence or cycle of phases experienced by each kind of shared ar-
ray in a high level orchestration code described in this section. For
each phase, this code describes the access mode of the array and
what (if anything) each participating client does with the array dur-
ing that phase. Logically, each phase is started by the client threads
executing during the prior phase signalling that they have finished
working with the array, allowing it to synchronize. When the array
has been synchronized, the clients listed in the orchestration code
for the coming phase are sent messages indicating that the array is
in the necessary mode.

Clients of a shared array are written in the message-driven style
characteristic of Charm++ code. The problem to be solved is de-
composed among collections of parallel objects, known as chares.
These objects define entry methods, which can be invoked remotely
and asynchronously by sending a message containing a method’s
input parameters. Each entry method typically encapsulates one
logically distinct step of the parallel algorithm being expressed.
As such, they are well-suited to express a chare’s work during one
phase of access to a shared array. The signatures of these methods
comprise the bulk of the module interface definition files to which
orchestration code will be added.

Beyond the benefits of reduced synchronization and better soft-
ware engineering, this abstract, declarative view of an array’s life-

1 MSA <3, double , summation >
2 ChargeGrid(ComputePmeMsa computes ,
3 PmeMsaZPencil pencils) {
4 while (true) {
5 // Grid ready for forward interpolation
6 Accum { computes.recv_grid(@); }
7 // First -dimension FFT and transpose to
8 // workers for other dimensions
9 Read { pencils.grid_ready(@); }

10 // Invert first -dimension FFT after
11 // receiving inverse transpose
12 Write { pencils.rgrid_ready(@); }
13 // Interpolate from grid
14 Read { computes.ungrid(@); }
15 }
16 };

Listing 2. The syntax of our proposed high-level orchestration
language for message-driven MSA programs, illustrated using the
PME example

cycle provides the opportunity to generate efficient code to activate
clients and manage the array’s synchronization. This arrangement
also works well with another means of coordination in Charm++,
Structured Dagger [Kale and Bhandarkar 1996a], which can be
used to describe how the overall control flow of a chare derives
from asynchronous invocation of a collection of entry methods.

4.3 Orchestration Code Structure and Semantics
Our goal in describing a language for MDMSA orchestration is
to provide a centralized, consolidated view of the life-cycle of
each kind of shared array used in a parallel program. This code
would appear in the parallel module interface description files of
a Charm++ application. Thus, it will be translated along with the
rest of each module’s interface to generate header and source files
to compile into the program. To that end, the orchestration code for
each kind of array pulls together a wide variety of information that
would otherwise be scattered throughout the application:

• Name: What name will be used when creating this kind of array
and referring to it in client code?

• Type: How many dimensions does this kind of array have?
What data type are its elements? What accumulation operation
is to be applied to those elements?

• Parameters: Who are the array’s clients? What other parameters
affect how the array is to be used?

• Life cycle: What happens with the array once it’s created?

A sample showing all of these things as they would appear in
an implementation of PME can be seen in listing 2. As can be
seen, this largely mimics that structure of a C++ class or function
definition. The first line begins with the token “MSA” to set this
off from other kinds of coordination code used in Charm++. It is
followed by effective template parameters describing the invariant
type characteristics of this kind of array. The name and parameters
follow through the end of line 3.

Body code, seen on lines 4–16, illustrates the life-cycle. Phases
are indicated by blocks headed by their access mode. We use ‘@’
as a shorthand for an appropriately-typed handle to the current
array. Programmers can declare and operate on variables in the
orchestration code, as in common sequential code, and use control
structures like loops and conditionals to dictate the overarching
flow of control. In this case, the PME process is simply looped
until the program exits.
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4.4 PME Implemented in Message-driven MSA
To better illustrate the structure of programs written using the
newly-implemented message-driven semantics for MDMSA, list-
ing 3 fully elaborates the PME implementation described earlier.
Since translation of our proposed syntax is not yet implemented,
we include a simple, manually-translated, centralized implementa-
tion of its functionality. The correspondence between phase blocks
in the high level syntax translated code is quite direct. For example,
the Read phase described on line 9 of listing 2 is translated to the
synchronization call and asynchronous method invocation on lines
14 and 15 of listing 3, respectively.

The code structure directly reflects the shared memory in-
terpolation algorithm. Computes and pencils are represented by
ComputePmeMsa and PmeMsaZPencil objects, respectively. The
orchestration code and run methods of the computes and pencils
manage the overall flow of the algorithm, while the work of in-
terpolation and force computation are done in grid, ungrid,
forwardFFT, and reverseFFT. Message-driven code from else-
where in the application calls the recv particles method when
particle data is available. The orchestration code calls recv grid
once all synchronization from the previous phase is finished. Once
these methods have both been called, the compute’s run method
is free to call grid, which performs the actual interpolation onto
the grid. The interpolation is performed using MDMSA bulk op-
erations. When all computes finish grid, the orchestration code
invokes grid ready on the pencils, which go on to perform their
1-D FFT and transpose. The work of performing FFTs in the other
dimensions and convolution with the force kernel are handled by
message-driven objects elsewhere in the application, invoked by
transposeToYZ on line 115. The convolved data returns and is
subjected to a final inverse FFT on lines 57-59. When they are
finished, the computes interpolate forces back onto particles in
ungrid, and the iteration is complete.

4.5 Generating Efficient Parallel Code
The sample translation described in the previous section preserves
the semantics and readability of the high-level code seen in list-
ing 2, but there are potential scalability concerns in the result-
ing program. We seek to generate efficient code to implement this
orchestration language, avoiding performance pitfalls and bottle-
necks that would plague a naı̈ve translation. The problems we fore-
see are as follows:

• High inter-phase latency as a result of having a critical path
through a single processor ‘conducting’ the phase transition
by receiving the message signalling end-of-synchronization and
then subsequently broadcasting to clients of the next phase.

• Such a processor becoming a communication bottleneck from
receiving and sending phase-transition messages to every other
processor in the system.

• Control flow decisions in orchestration code magnifying the
above.

The answer to these concerns lies in distributing or replicating
execution of the orchestration code in parallel across all of the
PEs. The per-PE cache objects need to know when synchronization
is complete, and so the cache or another connected set of per-
PE objects can directly activate client threads on each of their
respective PEs. This essentially solves the first two concerns.

The final concern is more involved, but not too challenging
conceptually. The data available to the high-level code comprise
‘local’ variables declared as part of the high level code and the
contents of the subject array. Any operations on this information
can be viewed as operations being performed collectively by the
entire set of participating processors. Thus, a compiler for this

1 // Hand -translated MSA orchestration code
2 void PmeMsaOrch ::run() {
3 ChargeGrid grid =
4 MSA3D <double , sum >(x, y, z);
5
6 ChargeGrid ::Accum a =
7 grid.getInitialAccum ();
8 while (true) {
9 // Grid ready for forward interpolation

10 computes.recv_grid(a);
11
12 // 1st -dimension FFT and transpose to
13 // workers for other dimensions
14 ChargeGrid ::Read r = a.syncToRead ();
15 pencils.grid_ready(r);
16
17 // Invert first -dimension FFT after
18 // receiving inverse transpose
19 ChargeGrid :: Write w = r.syncToWrite ();
20 pencils.rgrid_ready(w);
21
22 // Interpolate from grid
23 ChargeGrid ::Read r2 = w.syncToRead ();
24 computes.ungrid(r2);
25
26 a = r2.syncToAccum ();
27 }
28 }
29
30 // compute ’s Structured Dagger orchestration
31 void ComputePmeMsa ::run() {
32 while (true) {
33 overlap {
34 // Received from MSA orchestration
35 when recv_grid(ChargeGrid :: Accum a)
36 atomic { grid = a; }
37 // Received from associated patch
38 when recv_particles(vector <Particles > p)
39 atomic { particles = p; }
40 }
41 // Interpolate charges to the grid
42 atomic { grid(grid , particles ); }
43 // Received from MSA orchestration
44 when recv_ungrid(ChargeGrid ::Read r)
45 // Interpolate forces from the grid
46 atomic { ungrid(r, particles ); }
47 }
48 }
49
50 // pencil ’s Structured Dagger orchestration
51 void PmeMsaZPencil ::run() {
52 while (true) {
53 // Received from MSA orchestration
54 when grid_ready(ChargeGrid ::Read r)
55 // Do first dimension FFT and transpose
56 atomic { forwardFFT(r); }
57 // Received from other dimension ’s pencils
58 when inv_transpose(vector <double > d)
59 atomic { reverseFFT(d); }
60 // Received from MSA orchestration
61 when rgrid_ready(ChargeGrid ::Write w)
62 atomic { write_grid(w); }
63 }
64 }

Listing 3. Orchestration code for PME in message-driven MSA.
The translation of the ChargeGrid array’s orchestration can be
seen on lines 1–28. Structured Dagger code representing the flow
of control for the compute and pencil objects can be seen on lines
30–48 and 50–64, respectively.
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65 // ‘Grid ’ the particles ’ charges
66 void ComputePmeMsa ::
67 grid(ChargeGrid ::Accum a,
68 vector <Particle > particles) {
69 int x0, y0, z0;
70 double dep [64];
71 for (int i = 0; i < particles.size(), ++i)
72 {
73 // Get the position and interpolated
74 // charges for the ith particle
75 interpolate(particles[i],
76 x0, y0 , z0 ,
77 dep);
78
79 // Bulk interface -
80 // contribute a 4*4*4 patch
81 a.accumulate(x0 , y0 , z0 ,
82 x0+3, y0+3, z0+3,
83 dep);
84 }
85 a.syncDone ();
86 }
87
88 // ‘Ungrid ’ the forces on the particles
89 void ComputePmeMsa ::
90 ungrid(ChargeGrid ::Read r,
91 vector <Particle > particles) {
92 int x0, y0, z0;
93 double potential [64];
94 vector <Force > forces(particles.size ());
95 for (int i = 0; i < particles.size(), ++i)
96 {
97 getPosition(particles[i], x0, y0, z0);
98 r.read(potential ,
99 x0 , y0 , z0,

100 x0+3, y0+3, z0+3);
101 forces[i] = anterpolate(particles[i],
102 potential );
103 }
104 }
105
106 // FFT , transpose , iFFT , and write result
107 void PmeMsaZPencil ::
108 forwardFFT(ChargeGrid ::Read r) {
109 double d[X_PENCIL_LENGTH ];
110 r.read(d,
111 0, yPos , zPos ,
112 X_PENCIL_LENGTH -1, yPos , zPos);
113 r.syncDone ();
114 fft1d(d);
115 transposeToYZ(d);
116 }
117 void PmeMsaZPencil ::
118 reverseFFT(vector <double > d) {
119 data = d;
120 ifft1d(data);
121 }
122 void PmeMsaZPencil ::
123 write_grid(ChargeGrid ::Write w) {
124 w.write(0, yPos , zPos ,
125 X_PENCIL_LENGTH -1, ypos , zPos ,
126 data);
127 w.syncDone ();
128 }

Listing 4. Sequential code implementing the entry methods called
by the orchestration code in listing 3. These describe the work
of interpolation and reverse interpolation (‘anterpolate’) done
by the compute objects, and the Fourier transform, transpose, and
inverse Fourier transform done by the pencil objects.

code can decide to localize or replicate the work in question as
appropriate. If, for example, a decision was to be made based on
the contents of one entry in the array, a sensible translation would
be for the home processor of that element to examine it, make the
decision, and broadcast the result. A decision based on a reduction
over some of the contents of the array could be implemented as
an actual reduction across the PEs, with either the output value
or the resulting decision distributed to all. In effect, we can use
the techniques developed for compilers of the PGAS languages
[Dotsenko et al. 2004] and apply them here.

5. Related Work
Software distributed shared memory (DSM) systems have been
widely studied as a programming model for simplifying cluster
programming. These systems commonly use hardware designed to
support virtual memory page faults to detect non-local accesses and
hide the underlying messaging. This approach is combined with
relaxed memory consistency models to improve performance and
compensate for false sharing, which can otherwise be debilitating
when the unit of sharing is a memory page.

Treadmarks [Keleher et al. 1994] and its successor Cluster
OpenMP [Terboven et al. 2008] are successful DSM implemen-
tations that closely mimic physical shared memory from the pro-
grammer’s perspective. They impose no synchronization burden
beyond what is needed in a general shared memory program. A
multiple-writer coherence protocol ameliorates the performance
penalty of false sharing by allowing non-conflicting writes by mul-
tiple threads within a single page. However, false sharing and the
resulting cache invalidations remains a major source of perfor-
mance degradation in these systems.

Munin [Bennett et al. 1990, Carter et al. 1995] introduces the
idea of multiple cache coherence protocols based on common
memory access patterns. For example, read-mostly objects are read
far more often than they are written. Munin replicates read-mostly
objects and updates their values via broadcast. The authors identify
a variety of common access modes, including write-once, result,
producer-consumer, and migratory. All objects that do not fall into
an optimized category are handled with a general-purpose coher-
ence protocol.

In Munin, each variable’s mode is statically determined at
compile-time. Unfortunately, Munin’s virtual memory mechanism
requires each shared variable to be located on its own page. De-
spite this handicap, the efficiencies provided by specialized access
modes led to substantial performance gains.

These DSM systems are similar to MDMSA in that accesses
to shared arrays do not include any information about where the
accessed data is located. They differ in their lack of control over
data decomposition. Within each page, MDMSA supports a vari-
ety of data layouts specified by the programmer, such as row- and
column-major, to allow matching between the array’s memory or-
ganization and access patterns of the application. Each page is dy-
namically mapped to a PE by a combination of programmer specifi-
cation and runtime modelling and measurement. In contrast, Clus-
ter OpenMP and Munin do not offer mechanisms to control data
distribution, although Huang et al. have implemented mapping di-
rectives in OpenMP as part of an effort to implement OpenMP on
top of Global Arrays [Huang et al. 2005].

Global Arrays [Nieplocha et al. 1996] (GA) is a partitioned
global address space model that combines a global view of mem-
ory with explicit asynchronous gets and puts over RDMA. GA pro-
vides no caching or replication of remote data, preferring to allow
the programmer to directly control all memory transfers. One-sided
communication is used to access remote memory, which is staged
into a buffer provided by the programmer. In the case of discontigu-
ous array accesses, RDMA operations can be used directly to avoid
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unnecessary overhead. Like MDMSA, the unit of sharing in GAs
can be controlled by the programmer and is not tied to cache line or
memory page size. MDMSA’s composability with other program-
ming models is similar in spirit to GA’s composability with MPI
and discrete asynchronous tasks [Krishnamoorthy et al. 2006].

X10 [Charles et al. 2005] is a PGAS language with strong
support for asynchronous operations and flexible synchroniza-
tion. Its synchronization constructs, initially clocks and presently
phasers [Shirako et al. 2008], are somewhat similar in spirit to the
less restrictive synchronization we have introduced to MDMSA,
although the syntax and implementation are significantly different.

Charisma [Huang and Kale 2007] and Structured Dagger [Kale
and Bhandarkar 1996b] both aggregate low-level message-driven
methods into unified higher-level code with the goal of increasing
readability. Charisma targets the static dataflow case, while Struc-
tured Dagger provides constructs for expressing a directed acyclic
control flow graph. These systems are both limited to simplifying
programming in the message-driven model and do not address the
issue of composing multiple programming models. Like MDMSA,
they are specific to the Charm++ runtime system.

6. Conclusions and Future Work
A collection of interoperating languages for parallel programming
allows concise expression of algorithms in their most appropriate
form. Each language by itself may be incomplete, as long as it
allows clean expression of a significant class of parallel algorithms.
These languages can provide enhanced safety guarantees over fully
general programming models. In implementing such a collection,
composability of modules in different languages is critical to the
overall utility of the collection for writing applications. In this
paper, we considered the combination of the Multi-Phase Shared
Arrays programming model, which sacrifices some flexibility of
a shared memory system to prevent data races, with the general-
purpose message-driven execution model.

To improve on the safety guarantees of MSA, we introduce a
system of typed handle objects. An MSA’s access mode in each
phase of a parallel program defines the operations allowed on the
array during that phase. In MSA, the programmer was previously
responsible for manually keeping track of each array’s phase and
avoiding inappropriate accesses. Now, this state information is en-
coded in the type system and checked automatically at compile-
time.

Building on the improved safety provided by typed handles, we
tackled the problem of integrating MSAs into programs composed
of message-driven objects. This is accomplished by constructing
orchestration code that sends messages containing appropriate han-
dles on a shared array to clients involved in each phase. In line with
this, we modified the synchronization semantics such that client
threads not participating in an entire series of phases need not block
while waiting for synchronization to complete. Our enhanced ver-
sion of the MSA programming model with typed handles is called
message-driven MSA, or MDMSA

To demonstrate the advances described above, we presented a
pair of examples drawn from real applications. The first, a paral-
lel implementation of k-means clustering, demonstrates the use of
typed handles in SPMD-style MDMSA code. The second, particle-
mesh Ewald summation for molecular dynamics, is used to moti-
vate our synthesis of MSA with message-driven execution and to
illustrate use of the resulting design.

In the future, our plans for MDMSA extend in a few different
directions. Implementing the translator for orchestration code is
an important step to take. Additionally, while many optimizations
of MDMSA are possible in its implementation, the underlying
runtime, and specialized compilers, such work needs to be properly
motivated and directed. Thus, we will undertake a comprehensive

empirical study of the performance characteristics of programs
using MDMSA. The results from this study will guide both our
own efforts and those of application developers.
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