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Abstract
Replay of a parallel application is important for debugging and
has recently gained traction for tolerating hard, fail-stop failures by
logging messages and re-executing them. Previous work in replay
algorithms often makes minimal assumptions about the program-
ming model and application. However, parallel applications often
have determinism intrinsic in the code and may have ordering con-
straints imposed by the execution model. In this paper, we elucidate
the spectrum of determinism found in systems and thereby rede-
fine what a determinant constitutes and when it must be created. In
general, an execution of a code will partially specify a set of or-
ders that are always followed, leading to only a partial-order that
must be recorded to ensure deterministic replay. By exploiting this
methodology in fault tolerance for several benchmarks, we present
a scalable message-logging implementation with lower overhead
compared to using full determinants that scales up to 131,072 cores
on Intrepid BG/P.

Categories and Subject Descriptors D.4.5 [Reliability]: Fault-
tolerance; C.4 [Performance of Systems]: Fault tolerance

Keywords replay, partial-order determinants, fault tolerance, mes-
sage logging

1. Introduction
As we approach the exascale era, distributed algorithms must
evolve to meet the increasing demands of large-scale application
developement. Debugging parallel applications on large distributed-
memory machines—now reaching to millions of cores—requires
new methodologies that are highly scalable. In addition, machines
at this scale may require fault tolerance; as the number of cores
continues to increase, researchers have posited that failures may
become the limiting factor [7, 11, 23].

For distributed-memory applications, replay is a technique often
used to reproduce a particular execution schedule. In this context,
replay can be used for a variety of applications, of which debug-
ging and fault tolerance are the most prominent areas in use today.
For debugging, an application’s execution will be recorded in some
manner (and saved to memory or disk), and then the execution will
be replayed using the information recorded. In the seminal work in
this area, two major methodologies emerged. The first was called
data-driven replay (also called content-driven); in this formula-
tion all the inputs to a process are recorded, and the re-execution
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uses these inputs in the same sequence to provide deterministic re-
execution. The disadvantage of this approach is that the inputs may
require a massive amount of storage. The second major methodol-
ogy is control-driven replay: instead of recording the actual data,
the control flow is recorded, leading to much faster initial execu-
tion [16]. However, the disadvantage of this approach is that all the
processes that interacted must participate in the replay so the data
is regenerated.

Replay is applied to the area of fault tolerance to speed up re-
covery from a checkpoint or to form a consistent uncoordinated
checkpoint. In this context, messages are recorded by all processes
(in the data-driven style) along with the control. The control is then
saved in a stable manner; i.e. it is copied to k other processes, so
that it is not lost due to a failure. Hence during replay (equivalent
to recovery), the control can be recovered and because the data was
also recorded by the non-failed processes, it can be used during
replay so all the processes do not have to roll back to the check-
point. Therefore, this approach, called message logging, combines
the two approaches effectively.

The advantage of combining these two approaches is that all
the processes do not have to re-execute during replay. Hence, the
amount of resources required during replay may be much lower,
making this an alternative that is also applicable for debugging
on a very large parallel supercomputer. However, the protocol to
handle this is more complex, because the data is being partially
regenerated, and hence must be coherent with the stored control
sequence. Recent work [25] has proposed combining these two
approaches using a hybrid deterministic replay with subgroups in
MPI. For today’s large-scale systems, we posit that a combination
of these two approaches is desirable.

This paper describes a new replay protocol that allows both data
and control to be recorded, but primarily focuses on how to opti-
mize the amount of control that must be stored, while keeping it co-
hesive with the data. The previous work in this area assumes that ei-
ther all the control is recorded, or makes very specific assumptions
about what control must be recorded based on the programming
language. This paper formalizes various types of orderings and in-
terleavings to provide a framework for minimizing the amount of
control that must be recorded. We then present a novel algorithm
for replaying code regions with are flexible in terms of execution
order. Our protocol for optimizing the control that must be recorded
considers the following:

• parallel applications that often have intrinsic order in the code
that dictates that some communication operations will always
happen in a deterministic order given a particular input;

• codes that often have commutative regions in the control flow:
if a subset of nondeterministic communication operations are
transposed the resultant states will be identical;

• execution models that may impose an order on the external
inputs to a process, leading to a reduction in the number of
possible input orderings and further reducing nondeterminism
that must be recorded; and
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• causality in the execution that may dictate that some operations
always occur after others.

The synergy of these orders that are naturally established in
codes can greatly reduce the amount of information that is required
for a deterministic replay. In this paper, we combine these observa-
tions to develop a novel methodology for recording and replaying
codes which are only partially non-deterministic, making the fol-
lowing contributions:

• we define in the CSP (communicating sequential processes)
concurrency model how intrinsic order and two variants of
commutativity can be modeled (§ 3);

• we define how a partial-order dependency from the CSP model
maps to a determinant and prove its correctness (§ 4);

• we describe a fault-tolerance implementation using message-
logging called PARTIALDETFT that uses partial-order determi-
nants to store the control ordering (§ 5.3);

• we demonstrate the that our approach leads to practical speedups
by empirically measuring the forward-execution overhead and
recovery time on up to 131,072 cores of Intrepid for three
benchmarks (§ 6); and

2. Motivation and Background
We have observed that there is generally order in parallel programs;
this order is often intrinsic and due to how the program is written.
In general, writing a parallel program is difficult, so encoding or-
dering constrains in the code often makes reasoning about correct-
ness easier. Algorithms and applications also may have commuta-
tive regions where a subset of the messages may have their order
transposed and the resultant state is identical. However, as far as
we know, there are no algorithms that exploit this execution order
flexibility for replay or fault tolerance.

For the sake of replay, exploiting commutative regions to reduce
storage may introduce pernicious behavior if the programmer (for
example) manually annotates a region of code as commutative and
is actually wrong. However, by informing the replay system of
this presumption, it may actually aid in debugging. For the sake of
fault tolerance, exploiting commutatively leads only to advantages,
assuming it is correct.

2.1 Assumptions and Definitions
We define an endpoint in a distributed system to be a control
unit that is scheduled by the system. Previous work in the realm
considered processes to be endpoints, but our definition broadens
it to a task, object, virtual process, etc. We define control as the
environmental events that occur on the endpoint along with any
nondeterministic choices it autonomously makes. In this paper,
for the sake of reducing complexity in the descriptions, we will
consider messages to be the only type of event.

We try to make minimal assumptions about how messages are
sent or received or about how the execution model schedules work.
We intend to provide a theory that is applicable to many communi-
cation and runtime models.

2.2 Related Work
The seminal research on distributed control-oriented replay as-
sumed that all the control operations were stored; i.e. a total or-
der on the control sequence was saved [13, 17, 19, 24]. The first
work to diverge from this approach made the observation that in
message-passing programs only the order of messages that race
must be saved [21]. This paper concludes that this can be detected
at runtime by comparing the previous reception for a given pro-
cess to an incoming message and concluding that if both messages

are on the same channel, then there was a potential race. They also
track causality to distinguish between causally-separated messages.
However, the major assumption made is that every message is re-
ceived exactly once. For the sake of fault tolerance or in some cases
debugging, this assumption may not hold. If a endpoint fails or
crashes unexpectedly, there may be messages in flight that could
race, which were not considered. Also, this work is very specific to
a sequenced message-passing model. Other work has identified the-
oretically how messages that race can be detected [5]. Later work
improved on this practically by defining block races, or sets of mes-
sages that can possibly race, and concluded that constructs such as
IProbe in MPI need to be traced in some cases [4]. Further work
elucidates the patterns of MPI primitives that introduce nondeter-
minism [12], and replay schemes have been devised for those con-
structs [6].

Recent work has revived this in the context of message-logging
for tolerating hard failures making the observation that some MPI
program are send deterministic [8]. A send deterministic MPI pro-
gram is defined as a program where every process sends the same
sequence of messages in every valid execution regardless of the
reception order of non-causally related messages. It is essentially
the subset of MPI programs that are deterministic given the non-
overtaking (FIFO) assumptions of the MPI model. In this work, if
a program is send deterministic, the paper concludes that no deter-
minants are needed. Compared to this paper, it is specific to MPI,
and does not provide any facility when the program is not send
deterministic.

Other work has theoretically discussed the granularity of events
when modeling program executions [15], which is related to
how we model commutative regions (by collapsing transition
states/events from the environment’s perspective). In the paper’s
conclusion, they mention that this may be useful for optimizing
replay algorithms.

All previous work in this area has made the assumption that
even if some determinants are omitted due to intrinsic determinism,
during replay each process will always execute the same sequence
of events. However, this paper diverges from this notion by defining
an endpoint more generally (logical endpoints on the same physi-
cal process may interleave differently) and allowing for events to
change order for commutative regions within an endpoint. As far
as we know, this is the first work to allow replay to vary in order,
which significantly changes how the replay protocol must be for-
mulated.

3. Theory: Defining Order in CSP
We begin with a gentle introduction to the CSP (communicating se-
quential processes) model for the sake of accessibility [22]. Firstly,
the “sequential process” that we are modeling is the sequence of
communications an endpoint participates in (not a physical pro-
cess). The fundamental assumptions in CSP are that communi-
cation are instantaneous: although communications may be asyn-
chronous in practice the model assumes that they occur instantly
when the endpoint and environment agree on them. Once agree-
ment is reached, the communication is obligated to occur according
to the model. Intuitively, the agreement in message passing can be
viewed as an endpoint being ready to receive and another endpoint
sending a matching message.

Because we are using CSP to model the communication from
the viewpoint of a single endpoint, the lack of asynchrony in the
model does not inhibit us from modeling communications that may
be overlapped. For each possible state of an endpoint, we can model
the various possibilities given the control flow logic.

We define the environment as any input that can possibly change
the state of the endpoint. In an asynchronous model, the poten-
tial non-determinacy on the network acts as one of the possible
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inputs. An endpoint transitions to a new state when some input
becomes available, or when the endpoint makes a unilateral non-
deterministic decision. We distinguish between a non-deterministic
input (the result of a network race, for instance) and a decision the
process makes that is non-deterministic: for example, using a ran-
dom number generator to determine the next state. We use the term
event synonymously with the term input.

The fundamental operator in CSP is the prefix operator, which
denotes that an endpoint is willing to communicate the event a and
will wait indefinitely for a to occur. We use lowercase letters to
denote events, and uppercase to denote states. After the event a is
communicated, the endpoint behaves as P :

a→ P

We can also define sequences of communications as follows:

a→ b→ P

We define a non-deterministic input to an endpoint using the fol-
lowing notation:

a→ P 2 b→ P ′

In this case, the endpoint will make a deterministic decision be-
tween accepting a or b depending on the non-deterministic envi-
ronmental input and subsequently will become P or P ′ depending
on the input. An example of this would be the following message
passing program (without any assumption on order between end-
points):

if (endpoint == 0):
send(a, endpoint(1));
send(b, endpoint(1));

else if (endpoint == 1):
Message m = recv(endpoint(0));
if (m == a) // behave as P
else if (m == b) // behave as P’

We define a non-deterministic decision an endpoint makes unilat-
erally as follows:

a→ P u b→ P ′

In this case, the endpoint does not give the environment a choice,
instead it selects arbitrarily between the events. Theoretically, a
non-deterministic input is equivalent to a non-deterministic deci-
sion if the two choices are the identical: a→ P 2 a→ P ′ ≡ a→
P u a→ P ′.

We can define an endpoint P as hiding an event x from its
environment, by denoting P \ {x}. In this case, P has internalized
x and x will not be externally visible.

With this (a very minimal introduction to CSP), we now extend
the CSP model to aid us in defining our partial-order theory.

3.1 Equality
We use event equality in CSP to define whether events are consid-
ered as identical by the encapsulating system. Hence, we will not
define a universal equivalence relation, since it is very dependent
on the programming and execution model. For example, in MPI
an event may be distinguished by the communicator, possibly the
tag and/or the source processor. Also, for events sent from the same
processor, they may be distinguishable by their sending order, when
MPI non-overtaking rules apply.

For the sake of concreteness, the following is a simple exam-
ple of a message-passing equivalence relation that differentiates be-
tween events based on the tag (where a tag could be “ANY”) and

Interleavings Dependencies Description

Ordered (n) 0 Section 3.3
Unordered (n) n− 1 Section 3.4
Ordered (n) and
Ordered (m)

min(m,n) Lemma 3.1

Unordered (n) and
Ordered (m)

n Lemma 3.5

Unordered (n) and
Unordered (m)

m+ n Section 3.4

Commutative (n) 0 Section 3.6

n Ordered events
(X1, X2, . . . , Xn)

n∑
i=1

|Xi| −maxi|Xi| Lemma 3.3

Table 1. Number of dependencies required to order an interleaving
of sets of events

source:

(e1 = e2) ≡ (e1.source = e2.source ∧
(e1.tag = e2.tag ∨
e1.tag = ANY ∨ e2.tag = ANY))

3.2 Dependencies
When we have events that need to be ordered due to some non-
determinisim, we use the term dependency to mean the specifica-
tion of an order between them. In this section we will abstractly
consider the number of dependencies we need for various types of
CSPs. In section 4, when we describe the actual replay protocol, we
will specify exactly the information that the dependency is required
to have, which is dependent on the type of dependency (specifically
whether it is in a commutative region or not).

3.3 Ordered, Deterministic Inputs
An endpoint may allow a set of n possible inputs, which are all
ordered based on the control flow of the code:

a1 → a2 → . . .→ an → Pn

We say in this case that all the event dependencies are implicit in
the code, hence no dependencies are required for the endpoint to
realize state Pn.

3.3.1 Interleaving n Ordered Inputs
We now consider the problem of multiple ordered inputs that may
interleave arbitrarily. An example of this would be several parallel
modules interacting, which by themselves are ordered, but may
interleave non-deterministically.

We first consider the interleaving of two possible ordered sets
of inputs:

Lemma 3.1. Any possible ordering of two ordered sets of events
A of size m and B of size n can be represented with min(m,n)
dependencies

Proof. Without loss of generality let us assume that m ≥ n. In
that case there are m + 1 locations of A in which n events of B
can be executed. Therefore, to represent the order, we require n
dependencies.

Definition 3.2. Logical Event: In the two ordered set of events
discussed in lemma 3.1, for every dependency of the form ai → bj ,
we replace it with a logical event aij . Note that there can be only
one → to bj since there can only be one event directly preceding
bj . This reduces the interleaving of the two ordered set of events

3 2013/9/15



A,B described in the earlier lemma into an ordered event of A′

with max(m,n) events and min(m,n) dependencies.

Lemma 3.3. Any possible ordering of n ordered set of events

X1, X2, . . . , Xn can be represented with (
n∑

i=1

|Xi| − maxi|Xi|)
dependencies.

Proof. Base case 1: The number of dependencies required to rep-
resent any interleaving of two ordered set X1 and X2 of events is
min(|X1|, |X2|) (from lemma 3.1). This is equivalent to (|X1| +
|X2| − max(|X1|, |X2|)). This results in an ordered set with
max(|X1|, |X2|) events including logical events.

min(x, y) = x+ y −max(x, y)

We now assume it holds for n = k, show it holds for k + 1.
Since, this holds for n = k, it means that the maximum number of

dependencies required is (
k∑

i=1

|Xi| −
k

max
i=1
|Xi|). This results in an

ordered event with
k

max
i=1
|Xi| events. For this, there are two possible

cases when we consider k + 1 ordered set.

• Case 1: When the number of events in Xk+1 is less than the
events in the k ordered set i.e. |Xk+1| <

k
max
i=1
|Xi|. The

number of dependencies required to interleave the k + 1 or-
dered set with ordered set formed after interleaving k sets is
min(|Xk+1|,

k
max
i=1
|Xi|). The total number of dependencies re-

quired is

D =

k∑
i=1

|Xi| −
k

max
i=1
|Xi|+ |Xk+1|

=

k+1∑
i=1

|Xi| −
k

max
i=1
|Xi|

=

k+1∑
i=1

|Xi| −
k+1
max
i=1
|Xi|

• Case 2: When the number of events in Xk+1 is greater than
the number of events formed by the interleaving of the previous
k sets i.e. |Xk+1| >

k
max
i=1
|Xi|. The number of dependencies

required is then min(|Xk+1|,
k

max
i=1
|Xi|) The total number of

dependencies required is

D =

k∑
i=1

|Xi| −
k

max
i=1
|Xi|+

k
max
i=1
|Xi|

=

k∑
i=1

|Xi|

=

k∑
i=1

|Xi|+ |Xk+1| − |Xk+1|

=

k+1∑
i=1

|Xi| −
k+1
max
i=1
|Xi|

3.4 Unordered, Non-deterministic Inputs
We define a common relation where we have multiple non-deterministic
inputs that all occur but in any order:

Definition 3.4. The relation � represents an unordered set of
events that all occur:

((a1 → P (〈a1, ~v1〉))� . . .� (an → P (〈an, ~vn〉))) ≡
V = {a1, . . . , an}

Pstart = (vx ∈ V )→ P ({vx})
P (Y ) = (vx ∈ (V \ Y ))→ P (V \ (Y ∪ {vx}))

We have a set V of events that will all occur eventually in some
order. We start in the state were no events have occured (Pstart),
and the set V are possible non-deterministic inputs. Each time an
event is selected from the set V , we remove that as a possibility,
until we reach the final state. We use the vector ~vi to represent the
sequence of events that occured after the first event ai.

This relation can represent a common communication pattern
found in codes where several messages are sent to an endpoint,
which will all be eventually received. However, depending on
which message arrives first, the eventual state will be different.
The � relation also represents one of the most common source of
nondeterminism found in parallel applications.

We use the following shorthand to denote the same as above.
Consider a finite set of n unordered events:

n

�
i=1

ai →Pi(〈ai, ~vi〉)

Clearly, there are n! possible resultant states after the endpoint
transitions through all the immediate states. After n unordered
events occur, we can represent one possible outcome with n − 1
dependencies, which establishes a total order on the n events. To
store this state it will require log2 n! bits.

We now show how an unordered set of events of size n can be
interleaved with a non-intersecting arbitrary ordered set of events
with only n dependencies required in the worst case.

Lemma 3.5. Any possible ordering of a unordered set of events U
of size n interleaved with an ordered set of events O of size m can
be represented with n dependencies, if U ∩O = ∅.

Proof. Base case: We have the the following sequence formed from
the ordered set O: o1 → . . . → om → Pm. Of course, this
order needs no dependencies because the elements are by definition
ordered. When n = 1, U has exactly one event u0. In this case, u0

can execute before or after any one of the events in O and we can
clearly represent this order with one dependency.

We now assume it holds for n = k, show it holds for k + 1.
k

�
i=1

ai → P (〈ai, ~vi〉)� ak+1 → P (〈ak+1, ~vk+1〉)

If this holds for k, then we need k dependencies to order
�k

i=1 ai → P (〈ai, ~vi〉). Out of the ordered set, there are two pos-
sible cases as we observe the k + 1 event.

• The first case is where we have already observed all the events
in O. That is, the unordered k + 1 event occurs after all the
ordered events. P ( ~vk+m) will be the state and includes all the
transitions through O and all but one element of U . Hence with
one dependency, we can represent that uk+1 happens after the
state P ( ~vk+m).

• Otherwise, there may be x states left to transition through O,
hence the last state is P ( ~vk+m−x). We can arbitrarily split the
x states into two ordered subsets S1 and S2, where S1 happens
before S2. Both sets will have a final state, which we will
respectively call s1 and s2. The order we must represent is:

P ( ~vk+m−x) = s1 → P ( ~vk+m−x+||s1||)

P ( ~vk+m−x+||s1||) = um → s2
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This ordering can be represented with exactly one dependency
by making um dependent on s1. By doing this, we define the
splitting point between s1 and s2, defining exactly where um

happens in the sequence.

We could discuss how two possible orders interact if U∩O 6= ∅.
However, we deem this unnecessary because when analyzing a
endpoint, we should consider all inputs at a given state. Hence,
orders that are not distinct are not well-defined in our formulation.

3.5 Unordered, Non-deterministic Decisions
We now discuss the non-determinism that arises when a endpoint
makes a unilateral non-deterministic decision that does not arise
from the environment. If an endpoint selects between n choices,
if any of those choices are non-distinct, then according to the
model the endpoint selects arbitrarily between them. Any example
is a → P u a → P ′, which is exemplified in the following
message-passing program with no ordering on messages.

if (endpoint == 0):
send(a, endpoint(1));
send(a, endpoint(1));

else if (endpoint == 1):
Message m = recv(endpoint(0));
// the process may now behave as P or P’, due to the

contents of ’m’

Clearly, if an endpoint selects between n choices non-deterministically,
we must have enough information make the same choice that the
endpoint made. Hence, the above sends must be distinguished and
used to build a single dependency for that choice.

If an endpoint selects between n choices non-deterministically,
but will always select all of them eventually, the proofs in sec-
tion 3.4 apply, the only difference is a practical one, where the
inputs must be differentiated.

3.6 Unordered, Non-deterministic Commutative Inputs
Often codes have the pattern where messages may race, but due to
the way the code is written, any order that is executed will lead to
the same resultant state. For instance, if we have a code where each
message updates a distinct section of the endpoint’s local data, the
order the messages are executed will not matter. We can of course
have more complex cases, which may access the same data, but are
commutative in their operations. From the perspective of replay,
there is non-determinism due to the race (and could be modeled by
the � relation); however, because the outcomes are symmetric the
race is practically irrelevant. The following is a trivial example of
commutativity:

int data[2];
if (endpoint == 0):
send(a1, endpoint(1));
send(a2, endpoint(1));

else if (endpoint == 1):
count = 0
fetch:
Message m = recv(endpoint(0));
count++;
if (m == a1) data[0] += 1;
else if (m == a2) data[1] += 1;
if (count == 1): goto fetch;
else: goto finished;

finished:
// resultant state is identical: (a1−>a2)==(a2−>a1)

We now define a new relation that represents a pair of non-
deterministic inputs that after both are executed lead to the same
resultant state. Note, that this assumes that a1 and a2 are non-
equivalent events, although it does not seem to matter in the above
example. We call this type of commutativity weak because it only
allows non-equivalent events to commute. If there are equivalent
events we assume they are not part of the region given this defini-
tion:

Definition 3.6. The relation � represents an unordered set of
events that are weak commutative:

(a1 → P1 � . . .� an → Pn) ≡
(a1 → P (〈a1, ~v1〉)� . . .� an → P (〈an, ~vn〉)∧

P (〈a1, ~v1〉) = . . . = P (〈an, ~vn〉))

If we have a set of n events that weakly commute, we have
exactly one resulting state, but (n − 1)! transition states, which
are distinct. We prove in lemma 3.8 that these transition states
will be observed as exactly one state to the environment. (Any
externally visible change due to a different transitional path, leads
to a contradiction with the definition of commutativity.)

We now define a stronger form of commutativity allows for non-
deterministic decisions to also commute:

Definition 3.7. The relation � represents an unordered set of
events that are strong commutative:

(a1 → P1 � . . .� an → Pn) ≡

((a1 → P1 � . . .� an → Pn) ∧ a1
?
= . . .

?
= an)

With this relation the possible outcomes are not merely an
event ordering, but also how the system internally (and unilaterally)
decides to “match” them. So for a → P1 � a → P2, there
are actually four possible outcomes (two of them based on the
non-deterministic input), which we are declaring to be identical
(P1 = P2). Consider this example program:

if (endpoint == 0):
send(a’, endpoint(1));
send(a’’, endpoint(1));

else if (endpoint == 1):
Message m = recv(endpoint(0));
// work1: some work involving m (which may be the data

in a’ or a’’)
Message m’ = recv(endpoint(0));
// work2: some work involving m’ (which is the second

message)

In this example, we are assuming that a′ = a′′, but just because
the equivalence relation does not distinguish between the two,
the messages are distinct and may carry different data. Hence,
the � relation is stating that not only can be execute work1 and
work2 in any order, but also that the non-deterministic decision
that the endpoint makes may have a different outcome in replay.
More specifically in this case, the first recv may return a different
message than during the record phase.

We now prove that if a set of inputs are commutative, regardless
of the order of execution, the environment can only distinguish
between two different states:

Lemma 3.8. An weak or strongly unordered commutative region,( n

�
i=1

ai → Pi

)
∨

( n

�
i=1

ai → Pi

)
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with n events has exactly two states (Psc, Pfc) from the environ-
ment’s perspective, where,

Psc =(a1 → Psc u a1 → Pfc)2

(a2 → Psc u a2 → Pfc)2 . . .2

(an → Psc u an → Pfc)

Proof. We prove this by contradiction. If this is not true, we can se-
lect some arbitrary state Px(〈 ~vx〉) which is not equal to final state
Pfc and hence must be a transition state after the vector ~vx is ob-
served. If this is true, then the environment can observe Px(〈 ~vx〉)
and communicate an arbitrary event z when it observes Px(〈 ~vx〉).
It is possible that Px(〈 ~vx〉) is never reached in an alternative execu-
tion because by the definition of commutativity ~vx may be ordered
differently. Hence, it is possible that z is not communicated in this
execution. This is a contradiction because it violates the definition
of both strong and weak commutativity, which say that the final
states must be identical.

Given this, if we have a strong- or weak-commutative region,
we can say that the endpoint hides all transition states, since we
just showed that any communication produced by the endpoint
should be identical to the communication produced if that state was
reached via another transition sequence.

We have devolved a commutative region into two states from the
environment’s perspective, which is important because it shows that
we need no information proportional to the size of the commutative
region to rebuild that state from the environment’s perspective.

4. PO-REPLAY: Partial-Order Replay Algorithm
The theoretical bounds on dependencies for different types of or-
ders in a distributed application, expressed in section 3, allow us to
reduce the amount of control data required for deterministic replay
depending on the application. We now define a replay algorithm
that maintains correctness with partial-order dependencies (includ-
ing commutative regions of code that may be reordered during re-
play). Our algorithm has the following properties:

• it tracks causality using Lamport clocks [3] and replays mes-
sages in causal order, except for commutative regions;

• it uniquely identifies a sent message regardless of whether the
order of message receptions is transposed; and,

• it requires exactly the number of determinants as dependencies
as specified in section 3.

A determinant is a piece of information stored to maintain the
order in a given snapshot of the application. For replay, it may be
written to disk or memory; for fault tolerance it will be sent to other
processes and stored stably: propagated to as many processes as
needed for it to persist past a failure scenario, depending on the
reliability requirements of the system.

We assume an interface that allows us to determine if a message
being received is order-dependent or order-independent based on
the theory. An order-dependent message requires a dependency
to be stored for it to execute properly during replay. An order-
independent message is either ordered by the code or is part of a
commutative region. The interface specifically returns for a given
incoming message m, any previous messages P that this message
depends on to execute correctly (that is, P must execute before
m). Note that in general we do not assume how the theory is
implemented: user annotations, static compiler analysis, etc. could
be possible implementations depending on the particular parallel
paradigm/language.

Replay or fault tolerance protocols typically store a sender se-
quence number and receiver sequence number along with the send-
ing and receiving process as a determinant. The sequence numbers
are process-local scalars that increase linearly as messages are sent
and received respectively. However, in our theoretical formulation,
we require more than process sequence numbers because we intend
to allow receptions to transpose during replay for commutative re-
gions, which means that the sequences may be different.

For the replay to be correct for fault tolerance, messages that are
sent must be uniquely identifiable, so duplicate messages can be
ignored. Duplicates may arise because during forward execution
message logging makes no assumptions about whether messages
have actually arrived to their destination. Hence, during replay on
a subset of the endpoints, all messages are re-sent and the ones
that arrived in forward execution are simply ignored. If replaying
an application on a subset of the processors, in a similar fashion
as message logging, this same problem may arise. Hence, our
algorithm ensures that every sent message in the system is uniquely
identified globally.

To identify messages regardless of replay transposition, we
mark messages based on their path to a causal ancestor within a
transitive commutative region. In this way, the identification sys-
tem is not based unilaterally on the endpoint’s current state, but the
message that caused the message to execute. Due to the conclu-
sions of section 3, we know that inside a commutative region other
messages that do not commutate are not allowed.

The extra assumptions we make for our unqiue identification
scheme is that the size of a commutative region is known a priori
(when the first message for it arrives) and for each reception inside
the commutative region there is a known upper bound on the num-
ber of messages that will be sent (the number of messages causally
dependent on the message received).

Given these assumptions, we now describe how a commutative
message is marked to uniquely identified it so it can be re-executed
in any order. For this purpose, a message is assigned a number
that represents its path from the causal ancestor in the transitive
group. A message mij on level i and jth child among c children is
assigned a path number pij which is pparentbinj where pparent is
the path of the parent and binj is the binary representation of the
jth child. Hence, binj will consist of log2 c bits.

Theorem 4.1. Every message identified by the tuple (SRN, SPE,
CPI) forms a unique global identifier, regardless of the execution
order, where,

SRN is the sender region number, which is a process local se-
quence number that is incremented for every send outside a
commutative region, and incremented once when a commuta-
tive region starts;

SPE the sender process endpoint, which is a unique identifier for
every endpoint in the system; and

CPI the commutative path identifier, which is zero outside a
commutative region and is equal to a sequence of bits that
represents the path to the root of the commutative region.

Proof. We first prove that a commutative region, composed of
messages C is always isolated by contradiction. If this is not true
then there could be a non-commutative message arriving while
a commutative region is executing. If this message mx is non-
commutative, then it depends on some message my ∈ C. This
contradicts lemma 3.8 because now the transition states could be
different depending on the interleaving of mx and my .

We can now consider two cases:

Non-commutative region because non-commutative regions are
completely ordered, the SRN and SPE uniquely identify every
message sent. Because the start of each commutative region on

6 2013/9/15



an endpoint increments the SRN, it is ordered with respect to
the non-commutative regions.

Commutative region we have already shown it is ordered with re-
spect to the non-commutative region and cannot be overlapped
with the non-commutative region; hence we now argue that
each message inside the commutative region can be uniquely
identified. Each commutative region is uniquely identified by
the SRN and SPE, and the size of the region is known. The num-
ber of messages that will target the starting commutative region
(the root) is known, because the size of the region is assumed to
be known. Hence, the CPI includes the set of bits that identifies
which message targeted it along with bits that uniquely repre-
sent each message that is sent. The number of bits needed for
this is known because we assume a bound on the number of sent
messages. For each message received past the root, we augment
a unique bit pattern to the CPI for each sent message. Hence, the
CPI for each message inside a commutative region will repre-
sent a unique path back to the root, which is idempotent of the
order in which it was executed.

5. PARTIALDETFT: Fault Tolerance with
PO-REPLAY

5.1 System Model
We assume a system with P processes that communicate via mes-
sage passing. A process in this model is the unit at which a fail-
ure may occur. Processes communicate along non-FIFO channels
using messages that are sent asynchronously and possibly out-of-
order, but they are guaranteed to arrive sometime in the future if the
recipient process has not failed. Before a message is processed, it
may be preprocessed (or buffered) by the system or user to delay
the reception based on its content.

Each process may have a set of tasks mapped to it. A task in our
model is an entity that the runtime system maps to a process, and
is possibly relocated during execution. A task has associated data
with it (that migrates with it) and some functions that execute when
a message arrives. A message is always directed toward a task and
a particular function that executes on that task.

We assume a fail-stop model for all failures: failed processes
do not recover from failures nor do they behave maliciously (i.e.
non-Byzantine failures). Process replacement is not required after
a failure, but excess processes/nodes can be used in post-failure ex-
ecution. Failures are detected by a system component that notifies
the runtime of a failure. This could be implemented using a heart-
beat mechanism built into the runtime that pings processes at a fixed
interval to determine if they are responsive. Failure detection is not
the focus of this paper, so we assume an adequate mechanism.

5.2 Background/Related Work
5.2.1 Checkpoint/Restart
A well-established method for providing fault tolerance in a large-
scale system is by saving a snapshot of the system state and rolling
back to a previous snapshot in case of failure, commonly known
as checkpoint/restart. With checkpoint/restart the system takes pe-
riodic checkpoints that are used to recover the state if the system
crashes. There are several libraries for HPC applications that pro-
vide checkpoint/restart functionality [2, 9, 20]. Checkpoint/restart
has many variants which depend on the amount of data that in-
cluded in the checkpoint.

5.2.2 Message Logging
Message logging is an extension to the checkpoint/restart mech-
anism that reduces the amount of work that must be re-executed

Checkpoint Failure

Task A

Task B

Task D

Task E

Restart

m1

m2

Time

Task C

m3

m4

m5

m1

m2

m3

m4

m5

Recovery

m6

m7

Forward Path

Figure 1. Execution through failures with rollback-recovery tech-
niques. Dotted elements appear only in checkpoint/restart, but not
in message-logging.

when a failure occurs. Instead of rolling back all the processes at
the point of failure, only the tasks on failed processes must be re-
executed. There are many variants of message logging [1], but we
focus on the causal, pessimistic protocols, which have been shown
to perform well [14, 18].

Sender-based pessimistic message logging works by each pro-
cess logging all the messages that it sends to another process past
the checkpoint (after this the sent messages can be discarded).
When a failure occurs, the checkpoint is restored for the failed pro-
cesses and the messages logged for the failed processes are used
to rebuild the state. All the other processes can continue execution
while the recovery occurs, but may be limited if they depend on the
failed processes, until the failed processes catch up.

In order to maintain a correct recovery (equivalent to replay),
determinants must be stored for each message reception so the or-
der of received messages is preserved during re-execution. Mes-
sage logging protocols typically make the assumption of piece-
wise determinism: essentially the property that the order of mes-
sage receptions matched with a given sent message is the only non-
deterministic event that can affect the state. A determinant is com-
posed of the sender sequence number and process, along with the
receiver sequence number and process. Determinants must be prop-
agated as soon as a process sends a message, because at this point
it may affect the state of the system as a whole. Typically, deter-
minants are either synchronously sent before a message is allowed
to be sent, or they are augmented onto any sent messages until an
acknowledgment is received that they are saved in enough places,
given the reliability requirements of the system.

Figure 1 shows an example of an execution with 5 tasks with
a rollback-recovery mechanism. The forward path is the portion
of the execution that has no failures. As soon as a failure affects
the system (in this example affecting tasks B and C), the system
rolls back to a previous checkpoint and resumes execution. During
recovery, different message receptions are possible depending on
the determinism of communication of the application. For instance,
message m5 may be received in a different order after the failure.
Message-logging guarantees by using determinants that message
delivery occurs exactly as it did before the crash. So with message
logging, message m5 will be delivered after m2 during recovery.

5.3 PARTIALDETFT Algorithm
We now define the PARTIALDETFT algorithm; a general replay al-
gorithm is essentially a subset. We use the following data structure
to store the local state for each process and for each determinant.

struct Determinant { int SRN, SPE; bitvector CPI; }
struct ProcessLocalData {

bitvector parCPI;
int RSN, SRN, LCSN;
list<Determinant> unackedDets;
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list<Message> msgLog;
}

The local state of each process is initialized as follows:

void initProcessLocalData() {
parCPI = RSN = SRN = LCSN = 0;

}

When a message is received from an endpoint (not including
self sends), we execute the following:

when recvMessage(Message msg) {
// ignore duplicate msg
if (msgLog.contains(msg)) return;

RSN++;
RPE = myEndpointID;

if (isOrderDependent(msg)) {
unackedDets.add(Determinant(msg.SRN, msg.SPE, RSN,

RPE));
// ask for ack on the new determinant, and remove from

unackedDets when it is received
}
parCPI = msg.CPI;

}

When a message is sent from a process, the following is per-
formed, and several pieces of information may be augmented to
the sent message:

when sendMessage(Message msg, int toPe) {
// add on all the unack’ed determinants
msg.augmentDets(unackedDets);
SPE = myEndpointID();
CPI = parCPI;

if (isCommutative(msg)) {
if (isNewCommutative(msg)) {
SRN++; LCSN = 0;

} else
LCSN++;

CPI = parCPI.append(LCSN);
} else SRN++;

msg.augmentSeq(SRN, SPE, CPI);
msgLog.add(msg, toPe);

}

Now we show the algorithm for replay, after a failure.

when failureNotify(list<int> failedEndpoints) {
// find all determinants for messages sent to the

failedEndpoints
// send determinants to the endpoint that logged the

message
// wait for all sends to complete (or termination detection)
foreach (msg,toPe) in msgLog {

if (toPe in failedEndpoints) {
// add on determinants for msg
// resend msg to toPe

}
}

}

when recvReplayMsg(Message msg) {
foreach d in (msg.determinants) {

Benchmark Configuration

LEANMD 600K atoms, 2-away XY, 75 atoms/cell
STENCIL3D matrix: 40963, chunk: 643

LULESH matrix: 1024 x 5122, chunk: 16 by 82

Table 2. Benchmarks and corresponding configurations used to
evaluate our protocol.

// check if dependecy is fulfilled
// if not add to buffer
// else if not duplicate then execute msg

}
// check buffer for messages that were dependent on ’msg’
// call recvReplayMsg on them

}

6. Empirical Results
We have taken several benchmarks written in Charm++ [10] and
analyzed them with regard to our theory. We found that all three
of these benchmarks do not need any determinants, given their im-
plementation (either the benchmarks totally order the receptions or
have commutative regions). We use these benchmarks to compare
our protocol with the full causal protocol implemented in Charm++
and the default checkpoint/restart scheme, which has been a topic
of research and has been well optimized.

For all the experiments we parallelized restart by redistribut-
ing the objects that were on the failed processor to several other
processors. For all the experiments, we distributed the objects in
round-robin fashion over 16 different processors.

We performed all our experiments on Argonne’s IBM Blue
Gene/P ‘Intrepid’, a 40960-node system, each node consisting of
one quad-core 850MHz PowerPC 450 processor and 2GB DDR2
memory. Our codes were compiled with IBM XL C/C++ Advanced
Edition for Blue Gene/P, V9.0. All our codes used the latest version
of the Charm++ runtime system.

The benchmarks we evaluated are: LEANMD, a molecular dy-
namics simulation of the behavior of atoms using the Lennard-
Jones potential similar to the miniMD application in the Mantevo
benchmark suite; STENCIL3D, a three-dimensional 7-point stencil
that uses the Jacobi method; and LULESH, a shock hydrodynamics
challenge problem defined by LLNL. The benchmark configura-
tions are shown in table 2.

Figure 2 shows the percent overhead incurred during the for-
ward path for PARTIALDETFT and FULLDETFT compared to us-
ing no fault tolerance protocol. The overhead on the forward path
will be due to logging messages and creating and storing deter-
minants stably (for the FULLDETFT protocol). For all the bench-
marks, PARTIALDETFT incurs under 5% overhead compared to
FULLDETFT which incurs over 15% in some cases. The STEN-
CIL3D benchmark shows very little overhead for both protocols
because the grain sizes are large and the number of messages are
low compared to the amount of computation.

Figure 3 shows the expense of a coordinated checkpointing,
which is a incurred regardless of the fault tolerance protocol that
is used. LEANMD has very low checkpointing cost because the
data size is very small compared to the amount of computation.

Table 3 shows the optimal checkpointing period assuming an
exascale machine with socket counts ranging from 64K to 1M.
We use this to derive a reasonable checkpoint period to test the
recovery time. Using this checkpointing period, we injected a
fault in the middle of the period and compared the execution
time during recovery of PARTIALDETFT to the checkpoint/restart
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Figure 3. Coordinated checkpoint time in milliseconds for three
benchmarks.

Projected Sockets Ckpt Time (ms) Optimal τ (s) Ckpt Period (steps)

LEANMD

65536 59.9 23.9 90
131072 58.2 16.7 123
262144 57.4 11.7 168
524288 57.3 8.3 206
1048576 56.2 5.8 220

LULESH

65536 370 59.3 195
131072 187 29.8 194
262144 96 15.1 196
524288 49 7.6 197
1048576 26 3.9 198

STENCIL3D

65536 455 65.8 112
131072 223 32.6 109
262144 112 16.3 109
524288 57 8.2 110
1048576 30 4.3 115

Table 3. Using Daly’s formula for the optimal checkpoint period,
we projected on socket counts from 64K to 1M the optimal check-
point period for the three benchmarks. This checkpoint period was
used in the below graph.

mechanism (figure 4(a)) and the PARTIALDETFT protocol (fig-
ure 4(b)). We observe that we obtain speedups compared to check-
point/restart, LEANMD showing the most benefit due to many
objects per processor, which enables a faster parallel recovery.
Compared to FULLDETFT, our protocol scales much better and
obtains speedups over checkpoint/restart at large scales.
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Figure 2. Mean percent overhead during forward execution compared to execution without message logging, comparing the two protocols
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obtain this by injecting a failure randomly in the middle of the checkpoint period, which is calculated according to Table 3.
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