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Why synchronization hurts
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Why synchronization hurts, part II: Load balance
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AMR Execution Overview
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Synchronization points in AMR simulations

Halo exchange

Inter-level interpolation/averaging

Timestep Calculation

Domain Decomposition

Elliptic Solvers
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Overview
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Asynchronous execution
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Asynchronous execution

Demonstrated in Uintah framework and Charm++ miniapp1

Overlap computation with communication

Execute in arbitrary order

Extent can vary

Challenging to adapt existing code

Potential application of code transformation, e.g. via ROSE

1“Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement”. Langer,
Lifflander, Miller, Pan, Kale, Ricker. SBAC-PAD 2012
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Localized Timestep Determination

Maximum timestep determined by stability conditions - CFL, etc.

Treated as global, though driven by local phenomena

Computed globally via collective

Subsequent steps depend on result - hard synchronization

Compute on each block

Coordinate with neighbors

Interpolate as necessary
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AMR Execution Overview
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Domain Decomposition

Set of blocks is ‘global’

Not every processor needs to know about every block

Execute blocks independently, tell them each about their own
neighbors

Can run asynchronously, in parallel

Localized Berger-Rigoutsos clustering or Tiled decomposition

Gunney’s ‘Bridge’ algorithm derives new neighbors from old
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Domain decomposition: Box generation6 J. LUITJENS

SBR Patches LBR Patches Tiled Patches

Figure 2. Patch-sets generated by the SBR (left), LBR (middle), and Tiled (right) algorithms. The
coarse level patches are drawn using dashed lines and the fine level pathes are drawn using solid
lines. The SBR and LBR algorithms use less patches but generate irregular patch sets. In the LBR
algorithm boundaries of the coarse level also exist on the fine level. The tiled algorithm generates

regular patches.

The time for the computation of GBR is equivalent to the serial algorithm performed on a
subset of the flags. Consequently the complexity for the for the computational portion of the
GBR algorithm O(F

P log B).
The communication step in GBRv1 involves performing two all-reduces at each node

and leaf of the recursive tree. The parallel complexity for an all-reduce operation is not
straightforward to define as it varies depending on the network topology and the MPI library
implementation. Within some MPI libraries the algorithm used may vary according to the
size of the reduction and the number of cores. In most cases the time for an all-reduce is
dominated by message latency and thus the time for an all-reduce is proportional to the
number of pairwise communications required to reduce the data, which requires a minimum
of log P pairwise messages.

In the best case, the recursive tree of the Berger-Rigoutsos algorithm is completely balanced

and the number of nodes is equal to

log B∑

k=0

2k which is the sum of a geometric series and is equal

to 2B − 1 making the number of messages

M(GBRv1) = (2B − 1) log P.

Thus the complexity for GBRv1 is

O(GBRv1) =
F

P
log B + B log P.

The improvements to this algorithm presented in [7] involve reducing the number of cores
that contribute to reductions at each level of the recursion. At the first level, every core
contributes and at each successive level the number of contributing cores decreases until the
algorithm terminates or only a single core is contributing to each reduction, at which point

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7
Prepared using cpeauth.cls

From Luitjens & Berzins 2011
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Domain Decompsition: neighbor determination

‘Bridge’ from A to B via C
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Figure 7: Boxes in completeness proof for bridge theorem.

NECDC 2012 Proceedings UNCLASSFIED
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Expected Impact

Faster AMR simulations

New optimizations for AMR developers to pursue

New room for ‘asynchronous iteration’ methods

Insights on asynchronous parallel algorithms
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Tree-structured AMR Domain Decomposition
Without Synchronization
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