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1 Executive Summary

Technical Abstract

Adaptive mesh refinement is a critical technique for the simulation of partial
differential equations. It is used across the full breadth of physical science and
engineering domains. By focusing numerical resolution where a given problem
demands it, AMR enables simulation studies that would otherwise be infeasible.
AMR codes are especially common on large parallel systems on which users are
limited in the amount of machine time they are allowed to assume.

The complexity of implementing efficient parallel AMR applications has led
to the development of many frameworks to support them. These frameworks
implement common elements providing the computational structure of AMR
and often include related numerical methods as well. Since the early develop-
ment of AMR codes, many common challenges have been subjected to intensive
study by computational researchers.

One particular challenge that spans many elements of how AMR is imple-
mented in distributed memory is the pervasiveness of globally synchronizing
operations. These synchronizations come in many different forms: exchanges
of cell data between nearby boxes, timestep length computation, mesh struc-
ture modification and dissemination, and calls to solver libraries for implicit
timestepping and steady-state computation. Every such synchronization dur-
ing execution imposes a cost on overall performance.

The obvious cost of operations that synchronize across an entire parallel
machine is the time taken by the operations themselves. As machines grow
larger, these operations take longer to execute. Frequently, these operations
are used to communicate per-processor information, adding another factor of
increased time. Eventually, that time can come to dominate the application’s
overall performance, in an Amdahl-like bottleneck.

However, the more critical cost of synchronous operation is less transpar-
ent. Every point of synchronization is an opportunity for load imbalance and
critical path delays to negatively impact performance. Furthermore, frequent
synchronization limits the window in which scheduling algorithms (including
mapping, load balancing, and prioritization schemes) can observe and address
these conditions. Even worse, despite having less time and information to work
with, they are responsible for simultaneously optimizing within each indepen-
dent synchronization window.

Existing research on AMR frameworks includes isolated attempts at reducing
or mitigating particular synchronization costs. However, none of them has ad-
dressed the questions of what would be necessary to attain a fully asynchronous
implementation of AMR, or what overall impact that could have on application
performance. My thesis will address these questions, with an aim to provide
efficient strong and weak scaling to a broad class of AMR applications.

To accomplish this, I will analyze, adapt, and improve upon existing parallel
algorithms and implementation techniques. Where necessary, I will develop new
methods that are suitable for localized, asynchronous execution. The guiding
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methodology will be to enable each box that appears over the course of a sim-
ulation to make independent forward progress in its execution, pausing only to
satisfy its own local dependences.

As I develop these techniques, I will apply a broad range of analysis meth-
ods and runtime mechanisms to optimize execution performance. By observing
the performance attainable with each successive relaxation of synchronization
requirements, I will develop further insights into the relative costs and benefits
of parallel algorithms with varying degrees of synchronization.

Intellectual Merit

This thesis will further the development of parallel algorithms whose interactions
are localized and whose execution is not constrained to the bulk synchronous
model. This development is critical both to extend the reach of current parallel
applications to future systems, and to guide the design of new applications.

Additionally, this work will test the limits of existing programming mod-
els for asynchronous parallel computing. In doing so, it will potentially drive
further theoretical and practical advances in the infrastructural software used
for asynchronous parallel programming. In particular, this work will place new
demands on techniques for identification and location of parallel entities in dis-
tributed memory systems.

Expected Impact

The proposed work will have substantial impact across many parts of the re-
search community:

• Users of AMR PDE simulations will experience faster execution, enabling
shorter time-to-solution and more intensive simulations. These benefits
can cascade to research downstream of those simulation studies, and to
the broader society drawing upon these research results.

• Developers of software systems underlying AMR simulations will be pre-
sented with new opportunities for optimization, exposed by the additional
freedom provided by asynchronous execution and the ideas it inspires.

• Research on numerical methods that enable the use of ‘stale’ data in com-
putations will have stronger motivations and grounding in the computa-
tional capabilities developed in this thesis and the performance results
that they demonstrate.

• Parallel computing researchers will have additional evidence for the value
of asynchronous algorithms and new techniques for their development,
analysis, and elucidation.
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Figure 1: A simple two-level AMR structure. A is a coarse block overlapping
refined blocks B and C.

2 Per-Box Asynchronous Execution

During the execution of each timestep in an AMR code, every box may com-
municate several times with its neighbors, boxes on neighboring levels of its
hierarchy with which it overlaps, and boxes on other hierarchies that provide
it with additional data or require its data for local computation. Historically,
AMR codes have been structured to perform entire communication operations,
for all boxes in a set, in a synchronous fashion [1, 2, 3, 4]. Several AMR codes
appearing in the past year have evolved to exploit the fact that each individual
box may receive all of the data that it is waiting on well before the processor
hosting it finishes all communication in a given operation. Once a particular
box’s private dependencies are satisfied, the processor is free to perform subse-
quent local computations on that box.

The existing work in this area provides preliminary evidence that it is possi-
ble to run particular AMR applications with efficient strong scaling. Work that
I contributed to demonstrated a 2D tree-structured code built in Charm++ [5]
running a simulation of an advection-diffusion problem. With minimal runtime
optimization, this code was able to strong-scale to 2k ranks of a Cray XE6 sys-
tem and 32k ranks of an IBM Blue Gene/Q system [6]. Further work on this
code using a more efficient load balancing algorithm developed by Harshitha
Menon improved the scaling results to 128k ranks on BG/Q [7]. We are cur-
rently preparing an article describing the adaptation of this code to 3D, further
performance optimizations, and more extensive scaling studies for publication.
This code also serves as a test bed for other work in progress on asynchronous
domain decomposition (§ 4.1).

The Uintah framework focuses on problems related to deflagration and det-
onation of combustible and explosive materials in 2 and 3 dimensions. For their
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primary fluid-structure interaction application, MPMICE, Meng et al. have
shown strong scaling to several hundred thousand cores of Titan and Mira with
efficiencies of 68% and 76%, respectively [8]. The other applications shown in
that paper do not exhibit the same degree of scalability or do not present strong-
scaling results at all. Within the bounds of each very-intensive timestep (≈ 1.5s
per step at the full scale of Titan), they perform detailed load and timing pre-
diction to approximately schedule the complete set of computational tasks to
be performed during that step [9, 10]. They report that scheduling consumes
an approximately constant amount of time, which at present scales represents
about 10% of execution time [11]. Their asynchronous runtime mechanism then
allows some tasks that are ready ‘early’ to execute out of turn. The detailed
data they show indicates that most tasks are nevertheless performed fairly close
to the sequence in which they were planned [8, Figure 3].

The Octopus framework implements octree-structured AMR for hydrody-
namics applications arising in astrophysics, using the HPX runtime system [12].
They use a pull-based model in which each block identifies the neighbors from
which it expects data for the next several timesteps, and passes a ‘future’ ob-
ject to that neighbor to be filled in when the data is ready. They strong scale
the code to 4k cores of a cluster with good efficiency. However, the benchmark
results may not be representative, because the benchmark presented never actu-
ally attempted to regrid and the code currently suffers sequential performance
issues that may hinder interpretation of their results1.

2.1 Proposed Work

For this element of my thesis work, I plan to adapt the Chombo framework
to fully asynchronous execution. Chombo has many characteristics that make
it a good target for this study. From a motivational standpoint, Chombo is
general-purpose, in the sense that it provides a proven computational and nu-
merical toolkit on which a wide range of applications have successfully been
built (e.g. [13, 14, 15, 16, 17]). I will use several of these applications to evalu-
ate the success of my work (§ 5). Chombo is also actively developed by an open
collaborative team that is eager to support this effort.

I will use the Charm++ parallel programming system as a substrate for this
work. It provides a rich ecosystem of infrastructure and tools for the imple-
mentation of dynamic and asynchronous parallel applications. In particular, its
facilities for programming variable collections of migratable parallel objects is
well suited to the work at hand. As a core developer of Charm++ for the past
several years, I am confident both that it meets the basic needs of this project
and that I am well equipped to address any problems that arise in its use.

Technologically, Chombo poses a mix of opportunities and challenges. The
opportunities present in Chombo’s structure are that it is highly modular and
its various component algorithms are all implemented in terms of a few well-
chosen primitives. At present, Chombo is implemented in a processor-oriented

1Personal communication with lead author Bryce Adelstein-Lelbach
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SPMD fashion. All data and work units are distributed across the full scope
of the system. Algorithms are expressed in a bulk synchronous form, in which
processors alternately compute and communicate in distinct operations.

The modularity is expressed in a form common to many applications and
libraries following the bulk synchronous model: every processor makes the same
subroutine calls in a common sequence at about the same time. Thus, even
though there are no explicit barriers when crossing module boundaries, any
such call is a point of soft global synchronization. To achieve fully asynchronous
execution, I will have to ensure that work from multiple modules can be fully
and freely interleaved at run time.

The key primitive that Chombo uses to implement both its own numerical
algorithms and higher-level application code are ‘data iterators’ that expose the
application data in processor-local blocks within a particular collection in an
arbitrary order. This encapsulated design was chosen specifically with future
needs for asynchronous and data-parallel execution in mind.

As implemented presently, data iterators can easily enable asynchronous ex-
ecution of single computational operations at a time, relative to a dependence on
one or more preceding communication operations. However, due to control flow
limitations of the existing SPMD code, they can not enable fully asynchronous
execution, in which each block makes independent progress through a longer
sequence of communication and computational operations. In order to achieve
this, existing code will have to be refactored or transformed to a new structure.

As a preliminary milestone, I will demonstrate the effect of single-operation
asynchrony. This can be expected to dramatically reduce the impact of any re-
mote communication latencies, because they will have substantial computation
with which to overlap. Once communication latency concerns are mitigated,
load balancing algorithms can safely be re-tuned from their current locality-
favoring heuristics, such as partitioned space filling curves. Instead, they can
focus on truly achieving load uniformity, limiting wasted time at subsequent
synchronization points.

By implementing this, the Chombo team and their application users will
receive immediate benefit from my work, long before the project is complete. A
practical challenge in this vein is that I also expect these experiments to show
limitations in grain size that Chombo developers have not previously addressed.
With a working design already in hand, I expect to have publishable results
from this improvement in the next couple months.

To answer the questions posed by my thesis about fully asynchronous ex-
ecution, I will have to convert at least the iterator instances traversed by my
benchmark applications to a different form. The Chombo code base includes
approximately 1000 static appearances of the token DataIterator – enough
that manual inspection and modification would be inappropriate, though not
truly ‘infeasible.’ Thus, I will develop a partially or fully automatic technique to
adapt this interface to enable fully asynchronous execution. A promising path
for implementing such a transformation would be to use the ROSE compiler
toolkit [18], with which I have prior experience.

It is worth noting that in an asynchronous execution environment, meth-
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ods that advance the computation using ‘stale’ data become more appealing
to implement [19, 20]. Within the framework to be developed in my proposed
thesis work, such methods would potentially be applicable. However, I intend to
maintain a focus on techniques for introducing asynchronous execution without
a corresponding degradation of numerical algorithmic efficiency [21].
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Figure 2: Potential timestep structures for coarse block A and fine blocks B and
C in a neighborhood, as in figure 1. Tick marks indicate points in simulated
time to which each block will incrementally update its contents. Where two
neighboring blocks have ticks in common, they must exchange data. Where
one block has a tick and a neighbor does not, the sub-cycling block must wait
to receive the other block’s subsequent values and interpolate in time before
updating.

3 Timestep calculation

In simulations of hyperbolic systems, the length of timestep taken at any point
in the domain must respect the CFL condition to generate a correct solution.
As a side effect, this means that even the most rapidly propagating phenomenon
has an upper bound on how many points of the domain it can reach in each
time step. We can exploit this numerical bound to eliminate the need to operate
with a global ‘consensus’ timestep length determined by a collective operation.

In existing structured mesh simulations, there is some regular interval at
which every part of the domain calculates how long a timestep it can take, and
then a global collective operation is performed to ensure that every processor
proceeds at the consensus minimum step length. In AMR codes, this calculation
may happen across all levels [3] (figure 2 left), or it may happen within each
level that updates on a subcycle basis [22, 23] (figure 2 center). In either form,
this presents a very frequent form of strong synchronization across the bulk
of the computation. The Octopus framework has demonstrated some benefit
from overlapping this reduction in a lagged fashion, and shown that for their
particular problems this does not negatively impact solutions [12]. However, a
lagged reduction is not proven to be a principled, generally-applicable solution
– there is currently no formal bound on the error it can introduce. Where
it hinders accurate solution, it also introduces an additional tradeoff between
algorithmic efficiency and implementation efficiency.

As a safety valve against a lagged reduction leading to wrong results, one
could build a check-and-reexecute solution. Two analogies come to mind for this
approach: fault tolerance and optimistic parallel discrete event simulation [24].
Explicitly implementing an AMR framework in either fashion is unappealing for
a few reasons. It introduces substantial additional implementation complexity.
It requires additional memory to store sufficient data to reexecute correctly from
as far back as when the faulty timestep first occurred. Finally, it still demands
global coordination through some sort of collective, that could ultimately induce
synchronization effects.
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3.1 Proposed Work

Suppose, instead, that every block took its would-be contribution to that re-
duction, and shared it with its neighbors in the form of a power-of-2 step length
factor that it intends to use during the next step. This could piggy-back on
exchanges of ghost cell data, for instance. Neighboring blocks could immedi-
ately calculate when they will next need to synchronize to exchange the next
set of ghost cells, in an integer number of steps. Depending on the nature of
the simulation, blocks hearing that a neighbor must take shorter steps could
also take that shorter step, or continue with its current step for one cycle and
shorten to the minimum of its neighbors’ lengths at the next cycle. A resulting
timestep structure is shown in the right of figure 2.

This new method introduces an additional coarse-fine interface in time be-
tween blocks that share the same spatial resolution. At that interface, the blocks
taking shorter steps will have to interpolate the value of the ghost cells owned
by blocks running coarser time steps. This additional interpolation should not
negatively impact the accuracy of the simulation, relative to subcycling in gen-
eral, because similar interpolation in time is already occurring at the spatial
coarse-fine boundaries at which values must be interpolated in space as well.
From a different perspective, this could be viewed as a step in the direction of
the Tent-Pitcher method for Spacetime Discontinuous Galerkin [25], in which
each mesh point takes the longest step it is individually allowed, but one largely
retaining the mathematical and consequently computational regularity of struc-
tured AMR both in space and time discretization.

As an added potential benefit of this method, the simulation as a whole can
compute fewer overall point updates without loss of accuracy. Observe that in
the traditional method, as soon as the timestep shrinks anywhere on a given
level, it must shrink everywhere on that level. Thus, all points on a given level
are updated as many times as the most critical points. In the new method, the
shortened timestep propagates gradually outward from the points demanding
the shortest steps. Thus, points residing in boxes far from the critical points
will take fewer, longer timesteps to reach the time when the new bound reaches
them. Effectively, where subcycling previously limited the number of operations
performed on entire levels that didn’t need them, we now subcycle at a resolution
of individual decomposed blocks within each level.

One question left open in this discussion is how, once timesteps have been
shortened by a given factor, a block can tell that it is again safe to take longer
time steps. The converging bounds principles of the new algorithm described
in 4.1 may also be applicable here. I may have to resolve this question in the
course of implementing the new method. In the course of execution, the finest
resolution blocks most affected by a moving phenomenon that demands a short
timestep may be regenerated and recalculate their necessary timestep afresh
from local neighborhood conditions.
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4 Domain Decomposition

Domain decomposition algorithms for AMR are generally responsible for answer-
ing three key questions that broadly characterize the subsequent simulation:

1. What boxes will exist at what resolution?

2. How do new boxes relate to preceding boxes and each other?

3. When executing in parallel, what processor will own each box?

In answering these questions, designers of such algorithms have faced a plethora
of demands on their operation and output:

1. Sufficient resolution over all parts of the problem domain for accurate,
stable solution

2. Relatively little excess resolution, to not require excess resources

3. Structural constraints from numerical and computational underpinnings
(e.g. sufficient buffers between levels) [23]

4. Small total number of boxes to limit execution overhead and management
costs

5. Enough boxes each with reasonable workload to enable load balancing

6. Fast, efficiently scalable execution

7. Computational ‘niceness’ of boxes (e.g. low surface area to limit commu-
nication; reasonable sizes and shapes to optimize sequential execution)

8. Aesthetic appeal to users in analysis and visualization(!)

There are clear tensions among these demands – more vs. fewer points (1 & 2),
more vs. fewer boxes (4 & 5), and speed vs. output quality (6 & everything
else). All of these are addressed in various forms in the extensive literature that
has developed over the past several decades (e.g. [26, 27, 28, 29]). An issue not
addressed in the existing literature is how to implement domain decomposition
in a manner that doesn’t create or include synchronization points around it.

Closely related to domain decomposition itself is the issue of how its result,
the simulation’s metadata, is represented and managed in distributed memory.
The näıve approach of giving every processor a simple list of every box and its
home is obviously non-scalable, in problem or system size. Thus, researchers
have developed a range of solutions to this issue. These solutions can be roughly
categorized along two axes: replicated vs. distributed metadata, and tree- vs.
patch-structured boxes. The differences in box structures are entrenched in the
assumptions that each framework can make depending on this choice, and so I
will treat them separately, below.
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The question of metadata representation and distribution has historically
been treated as separate from the process of domain decomposition itself: meta-
data was first generated in full, in whatever form the algorithm in use dic-
tated, and then transformed and packaged for each processor to receive and
keep through subsequent simulation phases. Thus, even a fully asynchronous
decomposition algorithm could still be stuck with synchronous metadata distri-
bution, or vice versa.

This separation between metadata generation and distribution has begun to
break down in more recent work. In Enzo-P, implemented in Charm++, the
distributed ‘scaffolding’ objects generated in parallel during decomposition be-
come the distributed metadata representation used in subsequent steps [30]. In
SAMRAI, Brian Gunney has introduced algorithms that carry evolving neigh-
bor information through the successive steps of the decomposition process, so
that every box that ultimately results has this information attached to it [31].
I describe below how an adaptation of the ideas in Gunney’s algorithm and
its correctness proof, in combination with asynchronous box generation, can
provide the foundations for fully asynchronous patch-based AMR (§ 4.2).

4.1 Tree-Structured AMR

In previous work [6], I have contributed to the optimization of a tree-structured
AMR code that replaces collective communication in its domain decomposition
with point-to-point messages among blocks and an asynchronous global ‘con-
vergence’ test using a termination detection (TD) mechanism [32, 33]. We are
currently preparing a revision of this work that requires only one round of TD
per regridding operation rather than two, along with other implementation im-
provements. Most recently, I have designed a modification of this protocol that
requires no global convergence test at all, eliminating non-local synchronization
from it entirely.

The premise of our previous work in this area was that each block could start
the regridding process with a calculation of what minimum level of refinement it
would need to provide. Blocks send messages to their neighbors indicating their
minimum refinement both after the initial calculation and anytime a block’s
level increases. Receiving a message from a neighbor may cause a block to
increase its own minimum level, to maintain a consistent refinement ratio at
all interfaces. Thus, these messages can cascade from one block to the next
until all blocks reach a refinement level representing a global least fixed point.
Because the algorithm communicated no information to place an upper bound
on that fixed point, its determination had to be detected by the absence of
further movement beyond it. The state machine driving each block’s actions
can be seen in figure 3.

In the newest protocol, blocks communicate not just their resolution de-
mands that incrementally increase lower bounds on their neighbors, but also
upper bounds on what resolutions could be demanded of them, based on what
they know of their neighbors’ conditions. When any block has sufficient infor-
mation to equate its lower and upper bounds, it can immediately conclude that
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Figure 3: Per-block state machine for the loosely synchronizing tree-structured
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it has reached its final value in the least fixed point solution. This decision
process is illustrated in figure 4. Both upper and lower bounds can be com-
municated via local point-to-point messages. Based on the working hypothesis
that every block will receive sufficient information to have its bounds converge,
this protocol thus requires no synchronizing global convergence test.

In the near future, I plan to establish the new algorithm’s correctness, imple-
ment it in our testbed code, and experimentally study its performance impact.
Other members of the group working on this code have hypothesized that the
direct performance benefits from eliminating the synchronization at this point
will be marginal, since many blocks may remain unconverged for about as long
as the global convergence test would have taken to trigger. Even if this is
true, eliminating synchronization offers other potential benefits for overall work
scheduling.

4.2 Patch-Structured AMR

Patch-based AMR can reduce the proportion of refined regions relative to tree-
structured AMR, particularly for problems with complex spatial features [].
Thus, algorithms for patch-based AMR domain decomposition generally at-
tempt to minimize the fraction of the domain that is over-refined. The degree
to which they achieve this is described as their efficiency [26]. Algorithms
commonly offer parameterized tradeoffs of efficiency against the various other
qualities listed above.

From an implementation standpoint, domain decomposition algorithms for
patch-based AMR can be viewed as solving a less-regular version of the prob-
lem faced in tree-structured AMR. The same basic physical and mathematical
considerations and constraints apply to the blocks generated: proper nesting,
minimum and maximum areas of refinement. However, the additional structural
degrees of freedom require that the decision algorithm be much more sophisti-
cated. Rather than deciding on a per-block basis whether it should be coarsened,
maintain its current level of refinement, or increase it, it must place arbitrary
zones of refinement relative to the cell-level tags provided. Once the decision
of which blocks to create is made, identifying their neighbors is also more com-
plicated, since the possible relationships among them are more numerous and
diverse.

There are two promising candidates for asynchronous patch-based grid de-
composition algorithms. These algorithms are responsible for answering the first
question posed above, of which blocks should exist. One possibility, Localized
Berger-Rigoutsos [34] runs the classical Berger-Rigoutsos algorithm [26] within
each existing block, and performs post-processing over these blocks to generate
the final set of blocks. I believe that these post-processing steps can all be per-
formed in a similarly localized fashion. The other possibility is Tiling [35], in
which blocks are only created of a fixed shape and grid alignment. The locality
of Tiling follows directly from its structural constraints.

As a new structure is determined, we can use an asynchronous modification
of Gunney’s ‘Bridge’ and ‘Modify’ algorithms [31] to identify the neighbors of
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Figure 5: Adaptation of Gunney’s Bridge algorithm to asynchronous per-block
execution

Data: The blocks of collection C know their respective neighbors in
collections A and B within neighborhoods of distance Γ.

Result: The blocks of collections A and B each know their neighbors in
the other, and can each locally determine when that knowledge
is complete.

Every block c ∈ C executes begin
Define N as the set of detected neighbors
for all neighbors a ∈ A of c do

for all neighbors b ∈ B of c do
if aΓ intersects b then

insert (a, b) in N
end

end

end

for all neighbors a ∈ A of c do
send a a message containing all pairs (a, x) ∈ N

end

for all neighbors b ∈ B of c do
send b a message containing all pairs (x, b) ∈ N

end

end

Every block a ∈ A and b ∈ B awaits as many messages as it knows of
neighbors it has in C, and saves the union of their contents as the
computed set of their neighbors in B or A, respectively.

the boxes in that structure. Its direct adaptation is shown in figure 5.
If the block-neighbor graph has k times more edges than the projection of

that graph according to the blocks’ processor mappings, then the new algorithm
send k times more messages. This need not be problematic, since those messages
will be more spread through time. Additionally, at strong scale, with few blocks
per processor, the factor k may be quite small.

In scenarios where message injection rates or link/switch congestion do
present issues for this algorithm, there are several possible optimizations that
bring its behavior closer to the processor-level synchronous algorithm. Gener-
ically, these messages could be delivered through a library like TRAM [36] or
Active Pebbles [37] to provide message-level aggregation. Any algorithm-specific
process- or network-level aggregation that doesn’t preserve the distinct messages
simply needs to sum the number of contributor blocks of C that it represents.

A holistic program-performance optimization to the basic algorithm is that
blocks of A and B can consume neighbor information as it arrives. For instance,
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if the operation for which the information is needed is an interpolation from
blocks of A to overlapping blocks of B, the computation and transmission for
a → b can begin as soon as a learns of b. Implementing this optimization will
require that a remember which blocks b it has sent data to in that operation, so
that other blocks of C telling it about the same neighbor don’t lead to repeated
work.

The upshot of combining LBR or Tiling with Gunney’s Bridge is that taken
together there is no need for any sort of collective operation or synchronized
communication to either generate new blocks nor to draw connections to and
among them. There is also no longer a need for any explicit mesh structure
representation, distributed or replicated, outside the implicit information em-
bedded with each block. Thus, there is no need to communicate to gather that
information. From this point, we can rely upon existing mechanisms such as
those implemented in Charm++ for asynchronously distributing and locating
those blocks across the set of processors in use.
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5 Applications

For the purpose of measuring the performance of my work, I will perform bench-
mark studies on a range of applications previously implemented in the Chombo
framework. Some of these applications have been used to measure the weak
scaling efficiency of Chombo [38]. My aim is to present efficient strong scaling
of these or similar applications. Collectively, they represent a mix of time-
dependent and time-independent problems, stressing various elements of the
overall work.

5.1 Godunov Gas Dynamics

One of the basic benchmarks used as an example program in Chombo is the
simulation of gas dynamics using a Godunov method [39]. This problem is
used as a representative of systems that follow hyperbolic conservation laws.
Computationally, it presents a straightforward test of the basic elements of
my thesis work - asynchronous update execution, timestep determination, and
domain decomposition.

5.2 Multigrid Poisson

The Poisson equation is broadly used as a test problem for numerical soft-
ware libraries and tools. As implemented in Chombo, it illustrates the time-
independent elliptic solution process using a geometric multigrid approach across
an AMR hierarchy. Chombo includes a native implementation of a geometric
multigrid solver, written using its own communication and computation prim-
itives. While time dependent problems perform different mathematical oper-
ations from such a solver, the computational expression is nearly the same -
communication of ghost cells, relaxations over each block, and interpolation
between levels (prolongation/restriction). Thus, optimizations of the Chombo
infrastructure as a whole should carry through to this particular setting as well.

5.3 Shock-Induced Combustion

The ultimate goal of an effort to improve the performance of modeling infrastruc-
ture like an AMR framework is to expand the scientific reach of that framework.
One of the predicted benefits of eliminating synchronization is the opportunity
to provide more effective load balancing. Evaluating this prediction requires a
test problem that induces very severe load imbalance, and showing that it can
be made qualitatively more scalable than previously.

An intriguing target in this vein is the problem of shock-induced combus-
tion [40]2. In this problem, a tube filled with a gaseous mixture of fuel and air
is subjected to a sharp increase in pressure. That shock induces heating in the
gas. At some point, the heat is sufficient to ignite combustion. When and where
this occurs, the combustion releases substantial additional heat and increases

2Description based on personal communication with Brian van Straalen
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the local pressure even further as a result of the chemical reactions occurring.
Thus, the shock is predicted to accelerate as the experiment progresses.

This problem exhibits several computationally challenging features. The
simulated medium has several effective phases (unburnt, pre-shock, post-shock,
and ash) with sharply different demands. Only a small but rapidly-moving
portion of the domain undergoes chemical reactions, which must nevertheless
be coupled to the overall dynamics. The moving shock front will require frequent
regridding to track with the finest resolution. Therefore, efficient scaling of such
an involved problem will demonstrate that the techniques described in this thesis
are effective and can be implemented efficiently.
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