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Efficient Local Search for DAG Scheduling

Min-You Wu, Senior Member, IEEE, Wei Shu, Senior Member, IEEE, and
Jun Gu, Senior Member, IEEE

Abstract—Scheduling DAGs to multiprocessors is one of the key issues in high-performance computing. Most realistic scheduling
algorithms are heuristic and heuristic algorithms often have room for improvement. The quality of a scheduling algorithm can be
effectively improved by a local search. In this paper, we present a fast local search algorithm based on topological ordering. This is a
compaction algorithm that can effectively reduce the schedule length produced by any DAG scheduling algorithm. Thus, it can improve
the quality of existing DAG scheduling algorithms. This algorithm can quickly determine the optimal search direction. Thus, it is of low

complexity and extremely fast.

Index Terms—DAG scheduling, multiprocessors, fast local search, quality, complexity.

1 INTRODUCTION

SCHEDULING computations onto processors is one of the
crucial components of a parallel processing environ-
ment. They can be performed at compile-time or runtime.
Scheduling performed at compile-time is called static
scheduling. Scheduling performed at runtime is called
dynamic scheduling. The flexibility inherent in dynamic
scheduling allows adaptation to unforeseen application
requirements at runtime. However, load balancing suffers
from runtime overhead due to load information transfers
among processors, the load balancing decision-making
process, and communication delay due to task relocation.
Furthermore, most runtime scheduling algorithms utilize
neither the characteristics information of application
problems nor the global load information for load
balancing decisions. The major advantage of static
scheduling is that the overhead of the scheduling process
is incurred at compile time, resulting in a more efficient
execution time environment compared to dynamic
scheduling. Static scheduling can utilize the knowledge
of problem characteristics to reach a well-balanced load.

We consider static scheduling algorithms that schedule
an edge-weighted directed acyclic graph (DAG), also called
a task graph or a macro-dataflow graph, to a set of
homogeneous processors to minimize the completion time.
Since the static scheduling problem is NP-complete in its
general forms [6] and optimal solutions are known in
restricted cases [3], [5], [7], there has been considerable
research efforts in this area, resulting in many heuristic
algorithms [19], [24], [4], [25], [20], [2], [14]. In this paper,
instead of suggesting a new scheduling algorithm, we
present an algorithm that can improve the scheduling
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quality of the existing scheduling algorithms by using
a fast local search technique. This algorithm, called
TASK (Topological Assignment and Scheduling Kernel),
systematically minimizes a given schedule in topological
order. In each move, the dynamic cost of a node is used to
quickly determine the search direction. It can effectively
reduce the length of a given schedule.

This paper is organized as follows: In the next section,
we review DAG scheduling algorithms. In Section 3, the
local search technique is described. The random local search
algorithm is discussed in Section 4. In Section 5, we propose
a new local search algorithm, TASK. Performance data and
comparisons are presented in Section 6. Finally, Section 7
concludes this paper.

2 DAG SCHEDULING

A directed acyclic graph (DAG) consists of a set of nodes
ni,no, ..., N, connected by a set of edges, each of which is
denoted by e; ;. Each node represents a task and the weight
of node n;, w(n;), is the execution time of the task. Each
edge represents a message transferred from one node to
another node and the weight of edge e, j, w(e; ;), is equal to
the transmission time of the message. The communication-
to-computation ratio (CCR) of a parallel program is defined
as its average communication cost divided by its average
computation cost on a given system. In a DAG, a node that
does not have a parent is called an entry node, whereas a
node that does not have a child is called an exit node. A
node cannot start execution before it gathers all of the
messages from its parent nodes. In static scheduling, the
number of nodes, the number of edges, the node weight,
and the edge weight are assumed to be known before
program execution. The weight between two nodes
assigned to the same processing element (PE) is assumed
to be zero.

The objective in static scheduling is to assign nodes of a
DAG to PEs such that the schedule length or makespan is
minimized without violating the precedence constraints.
There are many approaches that can be employed in
static scheduling. In the classical approach [13], also called
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list scheduling, the basic idea is to make a priority list of
node, and then assign these nodes one by one to PEs. In the
scheduling process, the node with the highest priority is
chosen for scheduling. The PE that allows the earliest start
time is selected to accommodate this node. Most of the
reported scheduling algorithms are based on this concept of
employing variations in the priority assignment methods,
such as HLF (Highest Level First), LP (Longest Path),
LPT (Longest Processing Time), and CP (Critical Path)
[1], [24], [15]. In the following, we review some of the
contemporary static scheduling algorithms, including the
MCP, DSC, DLS, and CPN methods.

The Modified Critical Path (MCP) algorithm is based
on the as-late-as-possible (ALAP) time of a node [24]. The
ALAP time is defined as T7(n;) = Teriicat — level(n;), where
Teritical 1S the length of the critical path and level(n;) is the
length of the longest path from node n; to an exit node,
including node n; [5]. The MCP algorithm was designed to
schedule a DAG on a bounded number of PEs. It sorts the
node list in the increasing ALAP order. The first node in the
list is scheduled to the PE that allows the earliest start time,
considering idle time slots. Then, the node is deleted from
the list and this operation repeats until the list is empty.

The Dominant Sequence Clustering (DSC) algorithm is
designed based on an attribute for a task graph called the
dominant sequence (DS) [25]. A DS is defined, for a
partially scheduled task graph, as the path with the
maximum sum of communication costs and computation
costs in the graph. Nodes on the DS are considered to be
relatively more important than others. The ready nodes
with the highest priority will be scheduled first. Then, the
priorities of the child nodes of the scheduled node will be
updated and this operation repeats until all nodes are
scheduled. The dynamic cost is used to quickly determine
the critical path length. This idea has been incorporated into
our TASK algorithm to reduce its complexity.

The Dynamic Level Scheduling (DLS) algorithm
determines node priorities by assigning an attribute,
called dynamic level (DL), to each node at every
scheduling step [20]. DL is the difference between the
static level and the message-ready time. DLS computes
DL for each ready node on all available processors.
Suppose DL(n;,J) is the largest among all pairs of
ready nodes and available processors, from schedule n;
to processor .J. Repeat this process until all nodes are
scheduled.

Recently, a new algorithm has been proposed by using
the Critical Path Node (CPN) [16]. This algorithm is based
on the CPN-dominate priority. If the next CPN is a ready
node, it is put in the CPN-dominate list. For a nonready
CPN, its parent node, n,, with the smallest ALAP time is put
in the list if all the parents of n, are already in the list.
Otherwise, all the ancestor nodes of n, are recursively
included in the list before the CPN node is in the list. The
first node in the list is scheduled to the PE that allows the
earliest start time. Then, the scheduled node is removed
from the list and this operation repeats until the list is
empty. The CPN-dominate algorithm utilizes the two
important properties of DAG: the critical path and the
topological order. It potentially generates a good schedule.

Although these algorithms produce relatively good
schedules, they are usually not optimal. Sometimes, the
generated schedule is far from optimal. In this paper,
we propose a fast local search algorithm, TASK, to
improve the quality of schedules generated by an initial
scheduling algorithm.

3 LocAL SEARCH

Local search was one of the early techniques for combina-
torial optimization. It has been applied to solve NP-hard
optimization problems [12]. The principle of local search is
to refine a given initial solution point in the solution space
by searching through the neighborhood of the solution
point. Recently a number of efficient heuristics for local
search, i.e., conflict minimization [8], [21], random
selection/assignment [22], [23], and pre and partial
selection/assignment [22], [23], have been developed.

There are several significant local search solutions to the
scheduling problems. The SATI algorithm was the first
local search algorithm developed for the satisfiability
problem during the late 1980s [8], [9], [10], [11]. This
scheduling problem is well-known as a Max-Satisfiability
problem. A local search solution to the SAT problem was
applied to solve several large scale industrial scheduling
problems.

Two basic strategies have been used in a local search.
The first one is a random search in which the local search
direction is randomly selected. If the initial solution point is
improved, it moves to the refined solution point. Otherwise,
another search direction is randomly selected. The
random strategy is simple and effective for some
problems, such as the n-queens problem [21]. However, it
may not be efficient for other problems such as the
microword length minimization [18] and the DAG schedul-
ing problem.

The second strategy utilizes certain criteria to find a
search direction that will most likely lead to a better
solution point. In the microword length minimization [18], a
compatibility class is considered only when moving some
nodes from the class may reduce the cost function. This
strategy effectively reduces the search space by guiding the
search toward a more promising direction. The local search
algorithm presented in this paper uses this strategy. With
carefully selected criteria, a local search for DAG
scheduling becomes very efficient and the scheduling
quality can be improved significantly.

4 RANDOM LOCAL SEARCH ALGORITHM

A number of local search algorithms for scheduling have
been presented [16], [17]. A random local search algorithm
for DAG scheduling, named FAST, was given in [16]
(see Fig. 1). In this algorithm, a node is randomly picked
and then moved to a randomly selected PE. If the schedule
length is reduced, the move is accepted. Otherwise, the
node is moved back to its original PE. Each move,
successful or not, takes O(e) time to compute the schedule
length, where e is the number of edges in the graph. To
reduce its complexity, a constant MAXSTEP is defined to
limit the number of steps so that only MAXSTEP nodes are
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searchstep = 0
do {
pick a node n; randomly
pick a PE P randomly
move n; to PE P
if schedule length does not improve
move n; back to its original PE
} while (searchstep++ < MAXSTEP)

Fig. 1. A random local search algorithm, FAST.

inspected. The time taken for the algorithm is proportional
to e x MAXSTEP. MAXSTEP is set to 64 [16]. Moreover,
randomly selected nodes and PEs may not be able to
significantly reduce the length of a given schedule. Even if
the MAXSTEP is equal to the number of nodes, leading to a
complexity of O(en), the random search algorithm still
cannot provide a satisfactory performance.

The FAST algorithm has been modified in [17], which is
shown in Fig. 2. The major improvement is that it uses a
nested loop for a probabilistic jump. The total number of
search steps is MAXSTEP x MAXCOUNT. MARGIN is
used to reduce the number of steps. MAXSTEP is set to 8,
MAXCOUNT to 64, and MARGIN to 2 [17]. A parallel
version of the FAST algorithm is named FASTEST. A
speedup from 11.93 to 14.45 on 16 PEs has been obtained for
FASTEST [17].

5 LocAL SEARCH wITH TOPOLOGICAL ORDERING
FOR SCHEDULING

We propose a fast local search algorithm utilizing topolo-
gical ordering for effective DAG scheduling. The algorithm
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is called TASK (Topological Assignment and Scheduling
Kernel). In this algorithm, the nodes in the DAG are
inspected in a topological order. In this order, it is not
required to visit every edge to determine whether the
schedule length is reduced. The time spent on each move
can be drastically reduced so that inspecting every node in a
large graph becomes feasible. Also, in this order, we can
compact the given schedule systematically.

For a given graph, in order to describe the TASK algorithm
succinctly, several terms are defined as follows:

e tlevel(n;), the largest sum of communication and
computation costs at the top level of node n;,
ie., from an entry node to n;, excluding its own
weight, w(n;) [26].

e blevel(n;), the largest sum of communication and
computation costs at the bottom level of node n;,
ie., from n; to an exit node [26].

e (P, the critical path, is the longest path in a DAG.
The length of the critical path of a DAG is

LCP = maX{L(nl)},
n, eV

where L(n;) = tlevel(n;) + blevel(n;) and V is the
node set of the graph.

The TASK algorithm is applied to a previously sched-
uled DAG. In this case, a scheduled DAG is constructed,
which contains scheduling and execution order information
[25]. To enforce the execution order in each PFE, some
pseudoedges (with zero weights) are inserted to incorporate
the initial schedule into the graph. The above definitions for
tlevel, blevel, and CP are still applied to the scheduled DAG.
Then, we define more terms:

e Node n; has been scheduled on PE pe(n;).

repeat
searchstep = 0; counter = 0;
do {
pick a node n; randomly
pick a PE P randomly
move n; to PE P

BestSchedule = NewSchedule;
BestSL = SL(NewSchedule);
endif

move it to another processor;
until (searchcount++ > MAXCOUNT);

BestSL = infinity; searchcount = 0; /* BestSL: Best schedule length */

if schedule length does not improve
move n; back to its original PE and increment counter;
otherwise set counter to 0;
} while (searchstep++ < M AXSTEP and counter < MARGIN);
if BestSL > SL(NewSchedule) then /* SL(S): Schedule length of schedule S */

NewSchedule = Randomly pick a node from the critical path and

Fig. 2. The modified FAST algorithm.
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procedure TASK (DAG_Schedule)
begin
/* initialization */
Construct a scheduled DAG;
for node i :=0ton—1do
L(n;) := tlevel(n;) + blevel(n;);
Lcp := maxp<icn L(n;), the longest path in DAG;

/* scarch */
while there are nodes in DAG to be scheduled do
begin
i := pick_a_node_with Max_L(n;);
for each PE £
obtain L*(n;) by moving n; to PE k;
t := pick_a_PE_with_Min_L*, where k =0,....,p — 1;
/* if no improvement */
if t == pe(n;) then
let node n; stay at PE pe(n;);
/* if there are improvements */
else begin
move node n; from PE pe(n;) to PE ¢;
modify_pscudo_cdges_in DAG;
propagate_tlevel_of_n;_to_its_children;
end;
mark n; as being scheduled;
end;
end;

Fig. 3. TASK: Topological Assignment and Scheduling Kernel, a local
search algorithm based on topological ordering for fast scheduling.

e Let p(n;) be the predecessor node that has been
scheduled immediately before node n; on PE pe(n;).
If node n; is the first node scheduled on the PE,
p(n;) is null.

e Let s(n;) be the successor node that has been
scheduled immediately after node n; on PE pe(n;).
If node n; is the last node scheduled on the PE,
s(n;) is null.

A sketch TASK algorithm is shown in Fig. 3 and the
detailed description of the TASK algorithm in Fig. 4. One
of the characteristics of this TASK algorithm is its
independence from the algorithm that was used to
generate the initial schedule. A node is labeled as n;
and its current PE number is pe(n;). As long as the initial
schedule is correct and every node n; has available pe(n;),
p(n;), and s(n;) nodes, application of the local compaction
algorithm guarantees that the new schedule of the graph
is better than or equal to the initial one.

The input of the algorithm is a given DAG schedule
generated by any heuristic DAG scheduling algorithm.
First, a scheduled DAG is constructed. A pseudoedge
may be added with zero communication time, that is, no
data are transferred along the edge. Step 2 computes the
value of blevel for each node in the scheduled DAG and
initializes tlevel for entry nodes. All edges are marked
unvisited. The variable next; points to the next node that
has not been inspected in PE k. Initially, none of nodes is
inspected, so next; points to the first node in PE k.

In Step 3, a ready node n;, with the maximum value
L(n;) = tlevel(n;) + blevel(n;), is selected for inspection. Ties
are broken by tlevel(n;). For the same tlevel(n;), ties are
broken randomly. A node is ready when all its parents have
been inspected. In this way, the nodes are inspected in a
topological order. Although other topological orders, such
as blevel, tlevel, or CPN-dominate, can be used, tlevel + blevel
has been shown to be a good indicator for the order of
inspection [24], [25].

To inspect node n;, in Step 4, the value:

L(n;) = tlevel(n;) + blevel(n;)

is recalculated for each PE. To conduct the recalculation at
PE k, node n; is pretended to be inserted right in front of
next. Here, tlevel(n;) can be varied if any of its parent
nodes was scheduled to either PE k or PE pe(n;). Similarly,
blevel(n;) can be varied if any of its child nodes was initially
scheduled to either PE k or PE pe(n;). Because the tlevels of
its parent nodes are available and the blevels of its child
nodes are unchanged, the value of L(n;) in every PE can be
easily computed. The values indicate the degree of
improvement by a local search. With the new L(n;)
recalculated for every PE, node n; is then moved to the
PE that allows the minimum value of L(n;). If node n; has
been moved to PE ¢, the corresponding pseudoedges are
modified in Step 5. The tlevel of n; is propagated to its
children so that, when a node becomes ready, its tlevel can
be computed. This process continues until every node is
inspected.
The TASK algorithm satisfies the following properties.

Theorem 1. The critical path length Lcp will not increase after
each step of the TASK algorithm.

Proof. The L(n;) of node n; is determined by the longest
path that includes n;. Assume L(n;) of node n; increases
as a result of moving node n;. Then, n; and n; must be on
the same path from an entry node to an exit node.
Because L(n;) increases, this path must be the longest
path that includes n; and it determines the value of
L(n;). If this path determines the value of L(n;), too,
L(n;) = L(n;). Otherwise, a longer path determines L(n;)
and L(n;) > L(n;). In each step, L(n;) will not increase
and L(n;) < Lep. Thus, L(n;) < Lep. Since the L value of
every node is not larger than Lcp, Lep will not
increase. O

If n; is a node on a critical path, reduction of its
L(n;) value implies the reduction of the critical path
length of the entire graph. (It may not immediately reduce
the critical path length in the case of parallel critical
paths.) If n; is not a node on a critical path, reducing its
L(n;) value does not reduce the critical path length
immediately. However, it increases the possibility of length
reduction in a later step.

In the TASK algorithm, tlevel and blevel values are
reused so that the complexity in determining L is reduced.
The following theorems explain how the topological order
makes the complexity reduction possible.

Theorem 2. If the nodes in a DAG are inspected in a topological
order and each ready node is appended to the previous node list
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Step 1. Constructing a scheduled DAG:

Step 2. Initialization:
For each node n;

Mark every e; ; as unuvisited
For each PE k
let next; point to the first node in the PE
Step 3. Selection:

Step 4. Inspection:

Step 5. Compaction:
let next; = s(ny)
let n; = p(n;) and n,, = s(ny)
delete edge ¢ ; if it is a pseudo edge

delete edge e;, if it is a pseudo edge
if no edge e;,, previously exists

let pe(n;) =t

Step 6. Propagation of tlevel

For each child node of node n;, say n;
mark edge e; ; as visited

Repeat Steps 3-6 until all nodes are inspected

For each node n; that is not the last node in a PE
let nj = s(n;), if there exists no e; j, create a pseudo edge e; ; from n; to n; with w(e; ;) =0

compute blevel(n;) by considering pseudo edges
if it is an entry node, mark n; as ready and initialize tlevel(n;) = 0

Pick the ready node n; with the highest value of L(n;) = tlevel(n;) + blevel(n;)
ties are broken by tlevel(n;); for the same tlevel(n;), ties are broken randomly

For each PE k, recompute L¥(n;) by assuming n; be moved to PE k and inserted before nexty,
Find a PE t such that L'(n;) = min(L*(n;),k = 0,....,p — 1)

Ift =pe(n;) /* node n; will stay at PEt */

else  /* move node n; from PE r = pe(n;) to PEt */

create a pseudo edge e, with w(e; ) =0 and mark it as visited
let s(n;) = ny, and p(ny,) = ng, and next, = n,

let n, = next; and n, = p(n,); delete edge e, if it is a pseudo edge
create a pseudo edge e, ; if no edge e, ; previously exists

create a pseudo edge e;, if no edge e;, previously exists

let s(ng) = ni, p(ni) = ng, s(n;) = ny, and p(ny) =n;

if all incoming edges of n; are marked as visited
mark n; as ready and compute tlevel(n;)

Fig. 4. The detailed description of the TASK algorithm.

in the PE, the blevel of a node is invariant before it is inspected
and the tlevel of a node is invariant after it is inspected.
Proof. If node n; is not inspected, then the topological order
implies that all descendants of n; are not inspected.
Therefore, the blevel of n; is not changed since the blevel of
all descendants of n; are not changed. Once n; is
inspected, then the topological order implies that all
ancestors of n, have been inspected. Because a node is
always appended to the previous scheduled nodes in the
PE, the tlevel of an inspected node remains unchanged.n

Following a topological order of node inspection, we can
localize the effect of edge zeroing on the L value of the
nodes that have not been inspected. After each move, only
the tlevel of a currently inspected node is computed instead
of computing the tlevels and blevels of all nodes. Therefore,
the time spent on computing L values is significantly
reduced.

Theorem 3. The time complexity of the TASK algorithm is
O(e + np), where e is the number of edges, n is the number of
nodes, and p is the number of PEs.

Proof. Insertion of pseudoedges in Step 1 costs O(n). Step 2
spends O(e) time to compute the blevel values. Step 3
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Fig. 5. A DAG for the example.

costs O(n) for finding the highest L value. The main
computational cost of the algorithm is in Step 4.
Computing the L value of each node costs O(D(n;)) in
inspecting every edge connected to n;, where D(n;) is the

degree of node n;. For n steps, the cost is:

> 0(D(n:)) = Ofe).

To complete inspection of a node, a target PE must be
selected from all the p PEs, resulting in the cost of O(np).
Therefore, the total cost is O(e + np). O

The TASK algorithm shares some concepts with the
DSC algorithm [25]. The topological order is used to avoid
repeated calculation of the dynamic critical path so that
the complexity can be reduced. The task selection criteria
of tlevel + blevel has been used in the MD [24] and
DSC algorithms. It measures the importance of a node for
scheduling and is proven as an efficient criteria of node
selection. The TASK algorithm is different from the
DSC algorithm in many aspects. DSC is an algorithm that
schedules a DAG onto an unbounded number of clusters,
whereas TASK is a local search algorithm that improves an
existing schedule on a bounded number of processors.
Although both DSC and TASK algorithms aim to reduce
schedule length, DSC realizes it by merging clusters,
whereas TASK realizes it by moving nodes among
processors. In DSC, the merging of clusters is based on
the gain in reduction of edges between a node and its
parents. TASK goes one step further by considering the
possible gain in reduction of edges between the node and its
children, which potentially results in a better and more
efficient decision.

In the following, we use an example to illustrate the
operation of the TASK algorithm.

Example. Assume the DAG shown in Fig. 5 has been
scheduled to three PEs by a DAG scheduling algorithm.
The schedule is shown in Fig. 6a, in which three pseudo
(dashed) edges have been added to construct a sched-
uled DAG: one from node ng to node ng, one from node

mev ng to node ng, and one from node ny to node ns (not
° PE0O PE1 PE2 ° PE0O PE1 PE2 ° PE0O PE1 PE2
g : g
2l 2
3+ "4
4l M2 ng | next
51 1 5 ||
6 next '
7L |ng ng| 3/ |n,
gl
9l
10\~
11+

Fig. 6. An example of TASK's operations.

(b) ©
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TABLE 1
The Initial blevel Value of Each Node for the Example

‘NodeHnl‘ng‘n3|n4‘n5‘n6‘n7‘ng‘ng‘nlo‘

| blevel [ 14| 9] 910 7] 6] 5] 4] 2] 1]
TABLE 2
The L Values of Ready Nodes for Selecting a Node to Be Inspected
‘ Iteration H ‘
\ [ n (04+14=14) / |
|2 [ no 249=11), ng (3+9=12) v/, n4 (1+10=11) |
| 3 [ no (249=11), ng (1+10=11) / |
| 4 [ ne 249=11) /, ns (4+7=11) \
| 5 [ ns (447=11), ng (6+6=12) / \
| 6 [ ns (447=11) /, g (6+4=10), ny (84+2=10) |
| 7 [ n7 (645=11) /, ng (6+4=10), ny (8+2=10) |
| 8 [ ns (6+4=10) \/, ny (8+2=10) \
[ 9 [ no (8+2=10) |
| 10 [ no (1041=11) / |
TABLE 3
The L Values of Node n; on Each PE to Select a PE
| Tteration | Node || PE 0 | PE 1 | PE 2 \

1 ny || 0+14=14* | 0+14=14 | 0+12=12 /

2 ny || 3+11=14 | 349 =12* | 1+12=13

3 ny | 4+12=16 | 5+9 =14 | 1+10=11*

4 ny || 249 =11* | 5+10=15 | 44+10=14

5 ne | 6+6 =12% | 6+4 =104/ | 6+9 =15

6 ns || 5+10=15 | 8+10=18 [ 4+7 =11*

7 ny || 9+6 =15 | 9+4 =13 | 6+5 =11*

8 ng || 6+4 =10% | 844 =12 | 8+4 =12

9 ng || 1043=13 | 842 =10* | 8+4 =12

10 ny || 10+1=11 | 10+1=11* | 10+1=11

shown in Fig. 6a). The schedule length is 14. The blevel
of each node is computed as shown in Table 1. Tables 2
and 3 trace the tlevel + blevel = L values for each step. In
Table 2, “y/” indicates the node with the largest L value
and is to be inspected in the current step. In Table 3,
“*” indicates the original PE and “/” is the PE to where

the node is moved.
First, there is only one ready node, n;, which is a CP
node. Its L value on PE 0 is:

L'%(n)) =0+ 14 = 14.
Then, the L values on other PEs are computed:

L'(ny) =0+ 14 = 14,
L*(ny) =0+ 12 = 12,

as shown in Table 3. Thus, node n, is moved from PE 0 to
PE 2, as shown in Fig. 6b. The L¢p of the DAG is reduced
to 12. In iterations 2, 3, and 4, moving nodes ny,ns,
and ny does not reduce any L value. In iteration 5, node
ng is moved from PE 0 to PE 1 as the L value is
reduced from 12 to 11, as shown in Fig. 6c. In the
following five iterations, nodes ns, ny, ng, nyg, and nyy do
not move.

6 PERFORMANCE STUDY

In this section, we present the performance results of the
TASK algorithm and compare the TASK algorithm to the
random local search algorithm, FAST. We performed
experiments using synthetic DAGs as well as real workload
generated from the Gaussian elimination program.
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TABLE 4
Comparison for Synthetic DAGs with CPN as Initial Scheduling Algorithm (Four PEs)

# of | CCR Schedule length Running time (sec)
nodes CPN| sd || +FAST| sd| % | +TASK| sd| % || OPN | FAST | TASK
1000 0.1 2536 | 27 2535 | 22| 0.06 2529 | 23| 03| 0.49 52.6 0.51
1 2820 | 41 2814 | 25| 0.2 2671 | 25| 5.3 | 0.10 13.4 0.16
10 5100 | 58 o091 | 47| 0.2 4463 | 44 | 12.5 | 0.20 241 0.27
2000 0.1 5011 | 47 5011 | 50 | 0.0 4995 | 37| 03 | 1.12 132 1.23
1 5508 | 68 5502 | 55| 0.1 5225 | 48| 5.1 | 045 55.1 0.53
10 10999 | 168 10979 | 110 | 0.2 9472 | 85| 13.9 || 0.52 66.7 0.64
3000 0.1 7730 | 45 7730 | 80 | 0.0 777 | 78| 2.0 | 0.69 87.2 0.88
1 7705 | 89 7697 | 76 | 0.1 7469 | 80 | 3.1 | 2.30 250 2.51
10 15622 | 202 15587 | 178 | 0.2 13149 | 181 | 15.8 || 0.91 119 1.20
4000 0.1 10002 | 99 9997 | 100 | 0.05 9925 | 8 | 0.8 || 1.51 228 1.82
1 10672 | 112 10646 | 98 | 0.2 10144 | 75| 5.0 | 2.34 287 2.68
10 21444 | 349 21420 | 203 | 0.1 18379 | 230 | 14.3 || 1.47 173 1.74
TABLE 5
Comparison for Synthetic DAGs with CPN as Initial Scheduling Algorithm (16 PEs)
# of | CCR Schedule length Running time (sec)
nodes CPN| sd || +FAST | sd| % | +TASK | sd| % | CPN | FAST | TASK
1000 0.1 663 8 663 | 8| 0.0 652 | 6| 1.7 | 1.50 55.1 0.57
1 961 | 10 960 | 10 | 0.1 912 | 8| 5.1 | 035 13.2 0.19
10 3198 | 25 3185 | 22 | 04 3088 | 24 | 3.4 | 0.67 24.0 0.32
2000 0.1 1350 | 11 1348 | 11 | 0.1 1318 | 12 | 2.4 || 3.85 140 1.50
1 1831 | 20 1829 | 17| 0.1 1740 | 17 | 5.0 || 1.40 04.2 0.61
10 6790 | 41 6789 | 42 | 0.01 6479 | 38 | 4.6 | 1.68 63.0 0.74
3000 0.1 2234 | 32 2234 |1 25 | 0.0 2156 | 22 | 3.5 || 2.22 89.1 0.96
1 2340 | 24 2339 | 24 | 0.0 2262 | 13 | 3.3 | 7.50 154 2.66
10 8768 | 101 8766 | 91 | 0.02 8470 | 88 | 3.4 || 3.06 119 1.28
4000 0.1 2930 | 11 2928 | 10 | 0.07 2777 | 15 1 5.2 || 5.00 198 1.98
1 2992 | 18 2992 | 21| 0.0 2864 | 22 | 4.3 || 7.51 167 2.83
10 13010 | 89 12990 | 92 | 0.2 12457 | 95 | 4.3 | 4.78 173 1.91

We use the same random graph generator in [17]. The
synthetic DAGs are randomly generated graphs consisting
of thousands of nodes. These large DAGs are used to test
the scalability and robustness of the local search algorithms.
These DAGs were synthetically generated in the following
manner. Given N, the number of nodes in the DAG, we first
randomly generated the height of the DAG from a uniform
distribution with the mean roughly equal to v/N. For each
level, we generated a random number of nodes which were
also selected from a uniform distribution with a mean
roughly equal to v/N. Then, we randomly connected the
nodes from the higher level to the lower level. The
edge weights were also randomly generated. The sizes of
the random DAGs were varied from 1,000 to 4,000 with an
increment of 1,000. Three values of the communication-
computation-ratio (CCR) were selected to be 0.1, 1, and 10.
The weights of the nodes and edges were generated

randomly so that the average value of CCR corresponded
to 0.1, 1, or 10. Performance data are the average over
two hundred graphs.

We evaluate performance of these algorithms in two
aspects: the schedule length generated by the algorithm and
the running time of the algorithm. Tables 4 and 5 show the
comparison of the modified FAST algorithm [17] and the
TASK algorithm on four PEs and 16 PEs, respectively, where
“CPN” is the CPN-Dominate algorithm, “FAST” is the
modified FAST algorithm, and “TASK” is the TASK algo-
rithm. The comparison is conducted for different sizes and
different CCRs. The CPN-Dominate algorithm [16] generates
the initial schedules. For the schedule length, the value in the
column “CPN" is the length of the initial schedule. The value
in the column “+FAST” is for initial scheduling plus the
random local search algorithm. And, the value in the column
“+TASK” is for initial scheduling plus the TASK algorithm.
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TABLE 6
Comparison for Synthetic DAGs with DSC as Initial Scheduling Algorithm (Four PEs)

# of | CCR Schedule length Running time (sec)
nodes DSC| sd || +FAST| sd| % | +TASK| sd| % | DSC| FAST | TASK
1000 0.1 2742 16 2650 | 22| 34 2505 | 24| 6.9 1.28 55.0 0.54
1 3145 | 33 3002 | 28 | 4.5 2756 | 28 | 124 0.60 16.1 0.16
10 4450 | 34 4413 | 33 | 0.8 4281 | 35| 3.8 0.76 25.8 0.28
2000 0.1 5332 | 56 5224 | 241 2.0 5100 | 31| 4.4 4.23 154 1.33
1 5845 | 44 5812 | 52| 0.5 5310 | 49| 9.2 2.83 54.3 0.59
10 8989 | 102 8902 | 97| 1.0 8625 | 56 | 4.0 2.63 63.2 0.67
3000 0.1 9020 | 97 8966 | 75 | 0.6 7898 | 77 | 124 5.90 99.2 0.90
1 7987 | 88 7883 | 59 | 1.3 7587 | 66 | 5.0 8.94 287 2.58
10 12300 | 138 12289 | 112 | 0.1 11847 | 86 | 3.7 5.77 123 1.22
4000 0.1 11566 | 87 11489 | 78 | 0.7 10476 | 36 | 9.4 | 11.97 199 1.88
1 11302 | 102 11222 | 98 | 0.7 10243 | 93| 9.4 | 12.73 287 2.97
10 18026 | 212 17879 | 165 | 0.8 17011 | 168 | 5.6 9.79 176 1.84

TABLE 7
Comparison for Synthetic DAGs with DSC as Initial Scheduling Algorithm (16 PEs)

# of | CCR Schedule length Running time (sec)
nodes DSC| sd|| +FAST| sd| % | +TASK | sd| % || DSC| FAST | TASK
1000 0.1 873 6 867 41 0.7 684 | 5| 22.6 1.23 48.0 0.59
1 1205 10 1169 6| 3.0 975 | 6| 19.1 0.57 13.2 0.22
10 3328 | 36 3320 | 30| 0.2 3092 | 27| 7.1 0.74 22.3 0.32
2000 0.1 1785 12 1758 11 | 1.5 1360 | 14 | 23.8 4.35 134 1.60
1 2487 | 19 2481 20 | 0.2 1887 | 16 | 24.1 2.62 50.2 0.73
10 7005 | 67 6992 | 70 | 0.2 6687 | b4 | 4.5 2.51 59.8 0.81
3000 0.1 3203 12 3203 | 241 0.0 2362 | 18 | 26.3 5.53 88.2 1.09
1 3320 | 45 3292 | 38| 0.8 2580 | 28 | 22.3 7.57 267 2.98
10 8989 | 102 8962 | 79| 0.3 8432 | 76 | 6.2 4.96 107 1.30
4000 0.1 4245 | 28 4233 | 33 | 0.3 3021 | 27 | 28.8 || 10.81 180 2.10
1 3940 | 40 3910 | 35| 0.8 3018 | 33 | 23.4 || 11.98 276 3.16
10 13362 | 98 13361 | 105 | 0.0 12901 | 56 | 3.5 8.98 160 2.01

Column “sd,” following each schedule value, is its standard
deviation. The “%” columns, following “+FAST” and
“+TASK,” are the percentage of improvement in the initial
schedule. The running times of the CPN-Dominate algo-
rithm, the modified FAST algorithm, and the TASK algorithm
are also shown in the tables. It can be seen that TASK is much
more effective and faster than FAST. The search order with
the L valueis superior to the random search order. In Table 5,
for CCR =10 on 16 PEs, the improvement ratio drops. In this
case, the degree of parallelism to exploit is maximized and
there is not much to do with it. The FAST algorithm is about
two orders of magnitude slower than TASK, partly because

MAXSTEP x MAXCOUNT = 256.

The FASTEST algorithm running on 16 PEs is faster, but still
one order of magnitude slower than TASK.

Tables 6 and 7 show the comparison with DSC [25] as
the initial scheduling algorithm. The cluster merging
algorithm shown in [26] maps the clusters to processors.
The CPN-Dominate algorithm generates a better schedule
for DAGs with smaller CCR and DSC is more efficient
when CCR is large. For smaller CCR, DSC is not very
good. Therefore, TASK produces a large improvement
ratio. On the other hand, DSC is particularly suited for large
CCR and TASK is unable to improve much from its
result. In general, less improvement can be obtained by
the TASK algorithm for a better schedule. This is because
a good schedule leaves less room for improvement. The
TASK algorithm normally provides uniformly consistent
performance. That is, the schedule produced by TASK does
not depend much on the initial schedule.
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TABLE 8
The Number of Nodes in Different Matrix Sizes and Grain Sizes for Gaussian Elimination
Matrix size 1k x 1k 2k x 2k
Grain size 64 32 16 8 64 32 16 8
# of nodes || 138 | 530 | 2082 | 8258 || 530 | 2082 | 8258 | 32898
TABLE 9
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Comparison for Gaussian Elimination with CPN as Initial Scheduling Algorithm

Matrix | Grain | # of Schedule length Running time (sec)
size | size | PEs || OPN || +FAST | % || +TASK | % | CPN | FAST | TASK
1k x 1k 64 4 209.4 209.0 | 0.2 193.8 | 7.5 || 0.01 0.34 0.01
32 8 109.8 109.8 | 0.0 97.4 1 11.3 || 0.01 1.28 0.02
16 16 96.5 56.5 | 0.0 50.1 | 11.3 || 0.08 4.55 0.09
8 32 28.9 28.9 1 0.0 26.1 | 9.4 | 0.62 24.9 0.56
2k x 2k 64 8 876.1 876.1 | 0.0 786.0 | 10.3 || 0.01 1.11 0.01
32 16 449.1 449.1 | 0.0 397.0 | 11.6 | 0.08 4.99 0.09
16 32 228.3 228.3 | 0.0 199.4 | 12.7 || 0.62 25.3 0.58
8 64 115.8 115.8 | 0.0 102.0 | 12.6 || 5.32 102 4.19

TABLE 10
Comparison for Gaussian Elimination with DSC as Initial Scheduling Algorithm

Matrix | Grain | # of Schedule length Running time (sec)
size | size | PEs | DSC | +FAST | % || +TASK | % | DSC | FAST | TASK
1k x 1k 64 4 211.8 193.4 | 8.7 199.6 | 5.8 || 0.01 0.20 0.01
32 8 97.1 95.2 | 1.9 95.9 | 1.3 | 0.09 1.22 0.02

16 16 494 48.8 | 1.2 48.4 | 2.0 || 0.87 5.68 0.10

8 32 25.0 249|104 24.7 | 1.2 || 3.79 24.6 0.66

2k x 2k 64 8 872.4 817.3 | 6.3 805.9 | 7.7 || 0.09 1.34 0.02
32 16 392.7 390.6 | 0.5 384.0 | 3.2 || 0.85 5.88 0.10

16 32 200.2 199.3 | 0.4 196.1 | 2.1 || 3.25 30.2 0.69

8 64 100.1 100.0 | 0.1 99.3 | 0.8 | 13.8 91.0 9.73

We also tested the local search algorithms with the DAGs
generated from a real application: Gaussian elimination with
partial pivoting. The Gaussian elimination program operates
on matrices. The matrix is partitioned by columns. The finest
grain size of this column partitioning scheme is a single
column. However, this fine-grain partition generates too
many nodes in the graph. For example, the fine-grain
partition of a 1k x 1k matrix generates a DAG of 525,822
nodes. To reduce the number of nodes, a medium-grain
partition is used. Table 8 lists the number of nodes in different
matrix sizes and grain sizes (number of columns). The CCR is
between 0.1 and 0.8. These graphs are generated by the
Hypertool from an annotated sequential Gaussian elimina-
tion program [24]. The comparisons of the FAST algorithm
and the TASK algorithm on different DAGs and a different
number of PEs are shown in Tables 9 and 10, where Table 9
uses CPN as the initial scheduling algorithm and Table 10
uses DSC as the initial scheduling algorithm. In general, a
cluster algorithm such as DSC performs well when commu-
nication of a DAG is heavy. Therefore, it generates better

schedules for Gaussian elimination. TASK performs better
than FAST in most cases and is much faster than FAST.

7 CoONCLUSION AND FUTURE WORKS

A local search is an effective method for solving NP-hard
optimization problems. It can be applied to improve the
quality of existing scheduling algorithms. TASK is a low-
complexity, high-performance local search algorithm for
static DAG scheduling. It can quickly reduce the schedule
length produced by any DAG scheduling algorithm. By
utilizing the topological order, it is much faster and of much
higher quality than the random local search algorithm.

We have demonstrated that TASK was able to drastically
reduce the schedule length produced by some well-known
algorithms such as DSC and CPN. In future work, a
comparison with the best scheduling algorithms such as
MCP [24] will be conducted. A preliminary comparison
showed that a small improvement was observed since the
MCP produces very good results already.
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